Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+)
In this study, the conversion of methane and carbon dioxide to synthesis gas using dry reforming of methane over Ni, Pd, and Pt/MgO catalysts in different concentrations of Ce3+, Ce4+and Ni2+ was prepared via the co-precipitation of Mg and Ce nitrates, followed by impregnation with 1 wt.% each of Ni...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2016
|
Online Access: | http://psasir.upm.edu.my/id/eprint/65445/1/FS%202016%202IR%281%29.pdf http://psasir.upm.edu.my/id/eprint/65445/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.65445 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.654452018-10-31T04:01:35Z http://psasir.upm.edu.my/id/eprint/65445/ Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+) Jassim Aldoghachi, Faris Abdulridha In this study, the conversion of methane and carbon dioxide to synthesis gas using dry reforming of methane over Ni, Pd, and Pt/MgO catalysts in different concentrations of Ce3+, Ce4+and Ni2+ was prepared via the co-precipitation of Mg and Ce nitrates, followed by impregnation with 1 wt.% each of Ni, Pd, and Pt metals to form Pt/Mg1- xNixO, Pd/Mg1-xCe3+ xO, Pd/Mg1-xCe4+ xO and Ni,Pd,Pt/Mg1-xCexO catalysts. The goal of this study was to prepare a catalyst with high activity and selectivity which prevent the carbon deposition onto the catalyst during the syngas production. The performance of metal / magnesia-promoter catalysts in syngas production and the factors influencing carbon deposition during reaction were also investigated. The produced catalysts were characterized using various kinds of analytical techniques. The Ni,Pd,Pt/Mg1-x Cex 3+O catalyst with cubic structure was synthesized using the coprecipitation method which showed good selectivity for dry reforming of methane reaction with CO2 and CH4 conversion rates of 99% and 84%, respectively, at ratio CO2:CH4, 1:1 at 900 °C. They also showed good thermal stability for the first 200h. and also, great potential for use in fuel processing. This catalyst also increased the activity & stability of DRM reaction by adding a small concentration of O2, which resulted in a combination of combustion and reforming reaction that made the overall process thermo-neutral and helped in limiting carbon formation. 2016-01 Thesis NonPeerReviewed text en http://psasir.upm.edu.my/id/eprint/65445/1/FS%202016%202IR%281%29.pdf Jassim Aldoghachi, Faris Abdulridha (2016) Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+). PhD thesis, Universiti Putra Malaysia. |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English |
description |
In this study, the conversion of methane and carbon dioxide to synthesis gas using dry reforming of methane over Ni, Pd, and Pt/MgO catalysts in different concentrations of Ce3+, Ce4+and Ni2+ was prepared via the co-precipitation of Mg and Ce nitrates, followed by impregnation with 1 wt.% each of Ni, Pd, and Pt metals to form Pt/Mg1- xNixO, Pd/Mg1-xCe3+ xO, Pd/Mg1-xCe4+ xO and Ni,Pd,Pt/Mg1-xCexO catalysts. The goal of this study was to prepare a catalyst with high activity and selectivity which prevent the carbon deposition onto the catalyst during the syngas production. The performance of metal / magnesia-promoter catalysts in syngas production and the factors influencing carbon deposition during reaction were also investigated. The produced catalysts were characterized using various kinds of analytical techniques. The Ni,Pd,Pt/Mg1-x Cex 3+O catalyst with cubic structure was synthesized using the coprecipitation method which showed good selectivity for dry reforming of methane reaction with CO2 and CH4 conversion rates of 99% and 84%, respectively, at ratio CO2:CH4, 1:1 at 900 °C. They also showed good thermal stability for the first 200h. and also, great potential for use in fuel processing. This catalyst also increased the activity & stability of DRM reaction by adding a small concentration of O2, which resulted in a combination of combustion and reforming reaction that made the overall process thermo-neutral and helped in limiting carbon formation. |
format |
Thesis |
author |
Jassim Aldoghachi, Faris Abdulridha |
spellingShingle |
Jassim Aldoghachi, Faris Abdulridha Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+) |
author_facet |
Jassim Aldoghachi, Faris Abdulridha |
author_sort |
Jassim Aldoghachi, Faris Abdulridha |
title |
Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+) |
title_short |
Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+) |
title_full |
Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+) |
title_fullStr |
Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+) |
title_full_unstemmed |
Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+) |
title_sort |
enhancement of dry reforming of methane for syngas production over m/mg1-xm’xo catalysts (m=ni, pd, and pt., m’=ce3+, ce4+, and ni2+) |
publishDate |
2016 |
url |
http://psasir.upm.edu.my/id/eprint/65445/1/FS%202016%202IR%281%29.pdf http://psasir.upm.edu.my/id/eprint/65445/ |
_version_ |
1643838317071958016 |
score |
13.214268 |