Identification of debris flow initiation zones using topographic model and airborne laser scanning data
Empirical multivariate predictive models represent an important tool to estimate debris flow initiation areas. Most of the approaches used in modelling debris flows propagation and deposit phases required identifying release (starting point) area or source area. Initiation areas offer a good overvie...
保存先:
主要な著者: | Lay, Usman Salihu, Pradhan, Biswajeet |
---|---|
フォーマット: | Conference or Workshop Item |
言語: | English |
出版事項: |
Springer Nature Singapore
2017
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/64622/1/Identification%20of%20debris%20flow%20initiation%20zones%20using%20topographic%20model%20and%20airborne%20laser%20scanning%20data.pdf http://psasir.upm.edu.my/id/eprint/64622/ https://link.springer.com/chapter/10.1007/978-981-10-8016-6_65 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Modelling of optimized hybrid debris flow using airborne laser scanning data in Malaysia
著者:: Lay, Usman Salihu
出版事項: (2019) -
Data mining and statistical approaches in debris-flow susceptibility modelling using airborne LiDAR data
著者:: Lay, Usman Salihu, 等
出版事項: (2019) -
Geomorphometric analysis of landform pattern using topographic position and ASTER GDEM
著者:: Lay, Usman Salihu, 等
出版事項: (2017) -
Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale
著者:: Jebur, Mustafa Neamah, 等
出版事項: (2014) -
Optimized neural architecture for automatic landslide detection from high-resolution airborne laser scanning data
著者:: Mezaal, Al-Karawi Mustafa Ridha, 等
出版事項: (2017)