Two derivative Runge-Kutta method with FSAL property for the solution of first order initial value problems

A new Two Derivative Runge-Kutta method (TDRK) based on First Same as Last (FSAL) technique for the numerical solution of first order Initial Value Problems (IVPs) is derived. We present a fourth order three stages TDRK method designed using the FSAL property. The stability of the new method is anal...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmad, Nur Amirah, Senu, Norazak
Format: Article
Language:English
Published: Indian Society for Education and Environment 2016
Online Access:http://psasir.upm.edu.my/id/eprint/51862/1/Two%20derivative%20Runge-Kutta%20method%20with%20FSAL%20property%20for%20the%20solution%20of%20first%20order%20initial%20value%20problems.pdf
http://psasir.upm.edu.my/id/eprint/51862/
http://www.indjst.org/index.php/indjst/article/view/97748
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new Two Derivative Runge-Kutta method (TDRK) based on First Same as Last (FSAL) technique for the numerical solution of first order Initial Value Problems (IVPs) is derived. We present a fourth order three stages TDRK method designed using the FSAL property. The stability of the new method is analyzed. The numerical experiments are carried out to show the efficiency of our methods in comparison with other existing Runge-Kutta methods (RK).