The Duchet conjecture

In this paper, we investigate a conjecture of Duchet that r(G)≤η(G)+1, where r(G) is the Radon number and η(G) is the Hadwiger number of a graph G. In this paper, we give a class of counter examples for which rg(G)=η(G)+2, where rg(G) is the Radon number for the g-convexity structure. On the positiv...

Full description

Saved in:
Bibliographic Details
Main Authors: Prakash, V., Parthasarathy, K. R., Rangan, C. Pandu
Format: Article
Language:English
Published: Indian National Science Academy 1998
Online Access:http://psasir.upm.edu.my/id/eprint/51724/1/51724.pdf
http://psasir.upm.edu.my/id/eprint/51724/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.upm.eprints.51724
record_format eprints
spelling my.upm.eprints.517242017-09-05T09:07:21Z http://psasir.upm.edu.my/id/eprint/51724/ The Duchet conjecture Prakash, V. Parthasarathy, K. R. Rangan, C. Pandu In this paper, we investigate a conjecture of Duchet that r(G)≤η(G)+1, where r(G) is the Radon number and η(G) is the Hadwiger number of a graph G. In this paper, we give a class of counter examples for which rg(G)=η(G)+2, where rg(G) is the Radon number for the g-convexity structure. On the positive side, we prove the conjecture for some special classes of graphs like cycles and chordal graphs. Indian National Science Academy 1998 Article PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/51724/1/51724.pdf Prakash, V. and Parthasarathy, K. R. and Rangan, C. Pandu (1998) The Duchet conjecture. Indian Journal of Pure and Applied Mathematics, 29 (4). pp. 447-459. ISSN 0019-5588; ESSN: 0975-7465
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
description In this paper, we investigate a conjecture of Duchet that r(G)≤η(G)+1, where r(G) is the Radon number and η(G) is the Hadwiger number of a graph G. In this paper, we give a class of counter examples for which rg(G)=η(G)+2, where rg(G) is the Radon number for the g-convexity structure. On the positive side, we prove the conjecture for some special classes of graphs like cycles and chordal graphs.
format Article
author Prakash, V.
Parthasarathy, K. R.
Rangan, C. Pandu
spellingShingle Prakash, V.
Parthasarathy, K. R.
Rangan, C. Pandu
The Duchet conjecture
author_facet Prakash, V.
Parthasarathy, K. R.
Rangan, C. Pandu
author_sort Prakash, V.
title The Duchet conjecture
title_short The Duchet conjecture
title_full The Duchet conjecture
title_fullStr The Duchet conjecture
title_full_unstemmed The Duchet conjecture
title_sort duchet conjecture
publisher Indian National Science Academy
publishDate 1998
url http://psasir.upm.edu.my/id/eprint/51724/1/51724.pdf
http://psasir.upm.edu.my/id/eprint/51724/
_version_ 1643835036746645504
score 13.211869