Deep learning metaphor detection with emotion-cognition association

The focal point of this work is to automatically detect metaphor instances in short texts. It is the study of extricating the most optimal features for the task by using a deep learning architecture and carefully hand-crafted contextual features. The first feature set is created using a Convolutiona...

Full description

Saved in:
Bibliographic Details
Main Authors: Razali, Md Saifullah, Abdul Halin, Alfian, Chow, Yang-Wai, Mohd Norowi, Noris, Doraisamy, Shyamala
Format: Conference or Workshop Item
Published: IEEE 2022
Online Access:http://psasir.upm.edu.my/id/eprint/44252/
https://ieeexplore.ieee.org/document/10007398
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The focal point of this work is to automatically detect metaphor instances in short texts. It is the study of extricating the most optimal features for the task by using a deep learning architecture and carefully hand-crafted contextual features. The first feature set is created using a Convolutional Neural Network (CNN) architecture. Then, three other feature sets are manually hand-crafted using contextual justifications. Next, all of the feature sets are combined. Finally, the combined feature sets undergo the classification process using Support Vector Machine, Logistic Regression, Decision Tree, K-Nearest Neighbour and Discriminatory Analysis. These well-known ma-chine learning classification algorithms are used at the same time for the purpose of comparison. The best algorithm for this task is found to be Support Vector Machine (SVM). The outcome of all the experiments using SVM are good in all the metrics used, with F1-measure of 0.83. Finally, comparison to existing works and performance of each feature sets are given. It is also found that a few sets performed well when they are used independently. However, even the sets that are not useful separately is proven to be very useful after the combination process.