Fabrication of an electrochemical sensor based on gold nanoparticles/carbon nanotubes as nanocomposite materials: determination of myricetin in some drinks
In this paper, the electrochemical behavior of myricetin on a gold nanoparticle/ethylenediamine/multi-walled carbon-nanotube modified glassy carbon electrode (AuNPs/en/MWCNTs/GCE) has been investigated. Myricetin effectively accumulated on the AuNPs/en/MWCNTs/GCE and caused a pair of irreversible re...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science
2014
|
Online Access: | http://psasir.upm.edu.my/id/eprint/37601/1/37601.pdf http://psasir.upm.edu.my/id/eprint/37601/ http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096686 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.37601 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.376012015-12-15T03:16:36Z http://psasir.upm.edu.my/id/eprint/37601/ Fabrication of an electrochemical sensor based on gold nanoparticles/carbon nanotubes as nanocomposite materials: determination of myricetin in some drinks Hajian, Reza Yusof, Nor Azah Faragi, Tayebe Shams, Nafiseh In this paper, the electrochemical behavior of myricetin on a gold nanoparticle/ethylenediamine/multi-walled carbon-nanotube modified glassy carbon electrode (AuNPs/en/MWCNTs/GCE) has been investigated. Myricetin effectively accumulated on the AuNPs/en/MWCNTs/GCE and caused a pair of irreversible redox peaks at around 0.408 V and 0.191 V (vs. Ag/AgCl) in 0.1 mol L−1 phosphate buffer solution (pH 3.5) for oxidation and reduction reactions respectively. The heights of the redox peaks were significantly higher on AuNPs/en/MWNTs/GCE compare with MWCNTs/GC and there was no peak on bare GC. The electron-transfer reaction for myricetin on the surface of electrochemical sensor was controlled by adsorption. Some parameters including pH, accumulation potential, accumulation time and scan rate have been optimized. Under the optimum conditions, anodic peak current was proportional to myricetin concentration in the dynamic range of 5.0×10−8 to 4.0×10−5 mol L−1 with the detection limit of 1.2×10−8 mol L−1. The proposed method was successfully used for the determination of myricetin content in tea and fruit juices. Public Library of Science 2014-05 Article PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/37601/1/37601.pdf Hajian, Reza and Yusof, Nor Azah and Faragi, Tayebe and Shams, Nafiseh (2014) Fabrication of an electrochemical sensor based on gold nanoparticles/carbon nanotubes as nanocomposite materials: determination of myricetin in some drinks. PLOS ONE, 9 (5). art. no. e96686. pp. 1-7. ISSN 1932-6203 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096686 10.1371/journal.pone.0096686 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English |
description |
In this paper, the electrochemical behavior of myricetin on a gold nanoparticle/ethylenediamine/multi-walled carbon-nanotube modified glassy carbon electrode (AuNPs/en/MWCNTs/GCE) has been investigated. Myricetin effectively accumulated on the AuNPs/en/MWCNTs/GCE and caused a pair of irreversible redox peaks at around 0.408 V and 0.191 V (vs. Ag/AgCl) in 0.1 mol L−1 phosphate buffer solution (pH 3.5) for oxidation and reduction reactions respectively. The heights of the redox peaks were significantly higher on AuNPs/en/MWNTs/GCE compare with MWCNTs/GC and there was no peak on bare GC. The electron-transfer reaction for myricetin on the surface of electrochemical sensor was controlled by adsorption. Some parameters including pH, accumulation potential, accumulation time and scan rate have been optimized. Under the optimum conditions, anodic peak current was proportional to myricetin concentration in the dynamic range of 5.0×10−8 to 4.0×10−5 mol L−1 with the detection limit of 1.2×10−8 mol L−1. The proposed method was successfully used for the determination of myricetin content in tea and fruit juices. |
format |
Article |
author |
Hajian, Reza Yusof, Nor Azah Faragi, Tayebe Shams, Nafiseh |
spellingShingle |
Hajian, Reza Yusof, Nor Azah Faragi, Tayebe Shams, Nafiseh Fabrication of an electrochemical sensor based on gold nanoparticles/carbon nanotubes as nanocomposite materials: determination of myricetin in some drinks |
author_facet |
Hajian, Reza Yusof, Nor Azah Faragi, Tayebe Shams, Nafiseh |
author_sort |
Hajian, Reza |
title |
Fabrication of an electrochemical sensor based on gold nanoparticles/carbon nanotubes as nanocomposite materials: determination of myricetin in some drinks |
title_short |
Fabrication of an electrochemical sensor based on gold nanoparticles/carbon nanotubes as nanocomposite materials: determination of myricetin in some drinks |
title_full |
Fabrication of an electrochemical sensor based on gold nanoparticles/carbon nanotubes as nanocomposite materials: determination of myricetin in some drinks |
title_fullStr |
Fabrication of an electrochemical sensor based on gold nanoparticles/carbon nanotubes as nanocomposite materials: determination of myricetin in some drinks |
title_full_unstemmed |
Fabrication of an electrochemical sensor based on gold nanoparticles/carbon nanotubes as nanocomposite materials: determination of myricetin in some drinks |
title_sort |
fabrication of an electrochemical sensor based on gold nanoparticles/carbon nanotubes as nanocomposite materials: determination of myricetin in some drinks |
publisher |
Public Library of Science |
publishDate |
2014 |
url |
http://psasir.upm.edu.my/id/eprint/37601/1/37601.pdf http://psasir.upm.edu.my/id/eprint/37601/ http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096686 |
_version_ |
1643832021138538496 |
score |
13.214268 |