A note on starshaped sets in 2-dimensional manifolds without conjugate points
Let W n be C ∞ complete, simply connected n-dimensional Riemannian manifolds without conjugate points. Assume that n=2 and S⊂W 2 is starshaped where ker S≠S. For every point x∈S∖ ker S, define A(x)={y:y lies on some geodesic segment inf S form x to a point of ker S}. There is a finite collection A o...
Saved in:
Main Authors: | Kilicman, Adem, Saleh, Wedad |
---|---|
格式: | Article |
語言: | English |
出版: |
Hindawi Publishing Corporation
2014
|
在線閱讀: | http://psasir.upm.edu.my/id/eprint/36210/1/A%20note%20on%20starshaped%20sets%20in%202.pdf http://psasir.upm.edu.my/id/eprint/36210/ http://www.hindawi.com/journals/jfs/2014/675735/abs/ |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Anote on the geodesic-ray property in manifolds without conjugate points
由: Saleh, Wedad, et al.
出版: (2015) -
On convexity in product of Riemannian manifolds
由: Saleh, Wedad, et al.
出版: (2016) -
Generalized geodesic convex functions on Riemannian manifolds
由: Kilicman, Adem, et al.
出版: (2019) -
On geometry of volume elements and fractional differentiable manifolds
由: Saleh, Wedad, et al.
出版: (2020) -
A note on the characteristic properties of geodesic sub-(α,b,s)-preinvex functions
由: Saleh, Wedad, et al.
出版: (2020)