Prior selection for Gumbel distribution parameters using multiple-try metropolis algorithm for monthly maxima PM10 data
The Multiple-try Metropolis (MTM) algorithm is the new alternatives in the field of Bayesian extremes for summarizing the posterior distribution. MTM produce efficient estimation scheme for modelling extreme data in term of the convergence and small burn-in periods. The main objective is to explore...
Saved in:
Main Authors: | Mohd Amin, Nor Azrita, Adam, Mohd Bakri, Ibrahim, Noor Akma |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
AIP Publishing LLC
2013
|
Online Access: | http://psasir.upm.edu.my/id/eprint/35055/1/Prior%20selection%20for%20Gumbel%20distribution%20parameters%20using%20multiple-try%20metropolis%20algorithm%20for%20monthly%20maxima%20PM10%20data.pdf http://psasir.upm.edu.my/id/eprint/35055/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
Similar Items
-
Multiple-try Metropolis Hastings for modeling extreme PM10 data
by: Mohd Amin, Nor Azrita, et al.
Published: (2013) -
Analyses of prior selections for Gumbel distribution
by: Rostami, Mohammad, et al.
Published: (2013) -
Markov chain Monte Carlo convergence diagnostics for Gumbel model
by: Mohd Amin, Nor Azrita, et al.
Published: (2016) -
Impact of dependence on parameter estimates of autoregressive process with Gumbel distributed innovation
by: Samuel, Bako Sunday, et al.
Published: (2018) -
Statistical Inference on the Modified Gumbel Distribution Parameters
by: Hurairah, Ahmed Ali Omar
Published: (2006)