Optimization of an antenna array using genetic algorithms
An array of antennas is usually used in long distance communication. The observation of celestial objects necessitates a large array of antennas, such as the Giant Metrewave Radio Telescope (GMRT). Optimizing this kind of array is very important when observing a high performance system. The genetic...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Published: |
Institute of Physics Publishing
2014
|
Online Access: | http://psasir.upm.edu.my/id/eprint/34766/ http://iopscience.iop.org/1538-3881/147/6 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.34766 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.347662015-12-22T09:08:01Z http://psasir.upm.edu.my/id/eprint/34766/ Optimization of an antenna array using genetic algorithms Kiehbadroudinezhad, Shahideh Noordin, Nor Kamariah Sali, Aduwati Zainal Abidin, Zamri An array of antennas is usually used in long distance communication. The observation of celestial objects necessitates a large array of antennas, such as the Giant Metrewave Radio Telescope (GMRT). Optimizing this kind of array is very important when observing a high performance system. The genetic algorithm (GA) is an optimization solution for these kinds of problems that reconfigures the position of antennas to increase the u-v coverage plane or decrease the sidelobe levels (SLLs). This paper presents how to optimize a correlator antenna array using the GA. A brief explanation about the GA and operators used in this paper (mutation and crossover) is provided. Then, the results of optimization are discussed. The results show that the GA provides efficient and optimum solutions among a pool of candidate solutions in order to achieve the desired array performance for the purposes of radio astronomy. The proposed algorithm is able to distribute the u-v plane more efficiently than GMRT with a more than 95% distribution ratio at snapshot, and to fill the u-v plane from a 20% to more than 68% filling ratio as the number of generations increases in the hour tracking observations. Finally, the algorithm is able to reduce the SLL to –21.75 dB. Institute of Physics Publishing 2014 Article PeerReviewed Kiehbadroudinezhad, Shahideh and Noordin, Nor Kamariah and Sali, Aduwati and Zainal Abidin, Zamri (2014) Optimization of an antenna array using genetic algorithms. The Astronomical Journal, 147 (6). art. no. 147. pp. 1-13. ISSN 0004-6256 ; ESSN: 1538-3881 http://iopscience.iop.org/1538-3881/147/6 10.1088/0004-6256/147/6/147 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
description |
An array of antennas is usually used in long distance communication. The observation of celestial objects necessitates a large array of antennas, such as the Giant Metrewave Radio Telescope (GMRT). Optimizing this kind of array is very important when observing a high performance system. The genetic algorithm (GA) is an optimization solution for these kinds of problems that reconfigures the position of antennas to increase the u-v coverage plane or decrease the sidelobe levels (SLLs). This paper presents how to optimize a correlator antenna array using the GA. A brief explanation about the GA and operators used in this paper (mutation and crossover) is provided. Then, the results of optimization are discussed. The results show that the GA provides efficient and optimum solutions among a pool of candidate solutions in order to achieve the desired array performance for the purposes of radio astronomy. The proposed algorithm is able to distribute the u-v plane more efficiently than GMRT with a more than 95% distribution ratio at snapshot, and to fill the u-v plane from a 20% to more than 68% filling ratio as the number of generations increases in the hour tracking observations. Finally, the algorithm is able to reduce the SLL to –21.75 dB. |
format |
Article |
author |
Kiehbadroudinezhad, Shahideh Noordin, Nor Kamariah Sali, Aduwati Zainal Abidin, Zamri |
spellingShingle |
Kiehbadroudinezhad, Shahideh Noordin, Nor Kamariah Sali, Aduwati Zainal Abidin, Zamri Optimization of an antenna array using genetic algorithms |
author_facet |
Kiehbadroudinezhad, Shahideh Noordin, Nor Kamariah Sali, Aduwati Zainal Abidin, Zamri |
author_sort |
Kiehbadroudinezhad, Shahideh |
title |
Optimization of an antenna array using genetic algorithms |
title_short |
Optimization of an antenna array using genetic algorithms |
title_full |
Optimization of an antenna array using genetic algorithms |
title_fullStr |
Optimization of an antenna array using genetic algorithms |
title_full_unstemmed |
Optimization of an antenna array using genetic algorithms |
title_sort |
optimization of an antenna array using genetic algorithms |
publisher |
Institute of Physics Publishing |
publishDate |
2014 |
url |
http://psasir.upm.edu.my/id/eprint/34766/ http://iopscience.iop.org/1538-3881/147/6 |
_version_ |
1643831252690665472 |
score |
13.211869 |