Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance
A one-step electrochemical process had been employed to synthesize nanocomposite films of polypyrrole/graphene (PPy/GR) by electrochemical polymerisation on indium tin oxide (ITO) from an aqueous solution containing pyrrole monomer, graphene oxide (GO) nanosheets and sodium p-toluenesulfonate (NapTS...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer
2013
|
Online Access: | http://psasir.upm.edu.my/id/eprint/30056/1/Preparation%20and%20characterization%20of%20polypyrrole.pdf http://psasir.upm.edu.my/id/eprint/30056/ http://link.springer.com/journal/10965/20/6/page/1 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.30056 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.300562016-11-29T07:34:55Z http://psasir.upm.edu.my/id/eprint/30056/ Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance Lim, Yee Seng Tan, Yen Ping Lim, Hong Ngee Huang, Nay Ming Tan, Wee Tee A one-step electrochemical process had been employed to synthesize nanocomposite films of polypyrrole/graphene (PPy/GR) by electrochemical polymerisation on indium tin oxide (ITO) from an aqueous solution containing pyrrole monomer, graphene oxide (GO) nanosheets and sodium p-toluenesulfonate (NapTS). The X-ray diffraction (XRD) patterns showed that the typical peak of GO at 9.9o was missing from the nanocomposite’s diffraction pattern, suggesting that the GO had been stripped off of its oxygenous groups after the reaction. We postulated that a nanocomposite film was produced through a layer-by-layer deposition based on field emission scanning electron microscope (FESEM) images. The Raman spectroscopy profiles exhibited that the D/G intensity ratio (ID/IG) of PPy was not altered by the inclusion of GO due to the low concentration of the material used. However, the concentration was sufficient to increase the specific capacitance of the nanocomposite by 20 times compared to that of pure PPy, reflecting a synergistic effect between PPy and GR, as analysed by a three-electrode electrochemical cell. The electrochemical performance of the nanocomposites was affected by varying the deposition parameters such as concentrations of pyrrole and GO, scan rate, deposition time and deposition potential. Springer 2013 Article PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/30056/1/Preparation%20and%20characterization%20of%20polypyrrole.pdf Lim, Yee Seng and Tan, Yen Ping and Lim, Hong Ngee and Huang, Nay Ming and Tan, Wee Tee (2013) Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance. Journal of Polymer Research, 20 (6). art. no. 156. pp. 1-10. ISSN 1022-9760; ESSN: 1572-8935 http://link.springer.com/journal/10965/20/6/page/1 10.1007/s10965-013-0156-y |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English |
description |
A one-step electrochemical process had been employed to synthesize nanocomposite films of polypyrrole/graphene (PPy/GR) by electrochemical polymerisation on indium tin oxide (ITO) from an aqueous solution containing pyrrole monomer, graphene oxide (GO) nanosheets and sodium p-toluenesulfonate (NapTS). The X-ray diffraction (XRD) patterns showed that the typical peak of GO at 9.9o was missing from the nanocomposite’s diffraction pattern, suggesting that the GO had been stripped off of its oxygenous groups after the reaction. We postulated that a nanocomposite film was produced through a layer-by-layer deposition based on field emission scanning electron microscope (FESEM) images. The Raman spectroscopy profiles exhibited that the D/G intensity ratio (ID/IG) of PPy was not altered by the inclusion of GO due to the low concentration of the material used. However, the concentration was sufficient to increase the specific capacitance of the nanocomposite by 20 times compared to that of pure PPy, reflecting a synergistic effect between PPy and GR, as analysed by a three-electrode electrochemical cell. The electrochemical performance of the nanocomposites was affected by varying the deposition parameters such as concentrations of pyrrole and GO, scan rate, deposition time and deposition potential. |
format |
Article |
author |
Lim, Yee Seng Tan, Yen Ping Lim, Hong Ngee Huang, Nay Ming Tan, Wee Tee |
spellingShingle |
Lim, Yee Seng Tan, Yen Ping Lim, Hong Ngee Huang, Nay Ming Tan, Wee Tee Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance |
author_facet |
Lim, Yee Seng Tan, Yen Ping Lim, Hong Ngee Huang, Nay Ming Tan, Wee Tee |
author_sort |
Lim, Yee Seng |
title |
Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance |
title_short |
Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance |
title_full |
Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance |
title_fullStr |
Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance |
title_full_unstemmed |
Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance |
title_sort |
preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance |
publisher |
Springer |
publishDate |
2013 |
url |
http://psasir.upm.edu.my/id/eprint/30056/1/Preparation%20and%20characterization%20of%20polypyrrole.pdf http://psasir.upm.edu.my/id/eprint/30056/ http://link.springer.com/journal/10965/20/6/page/1 |
_version_ |
1643829943868588032 |
score |
13.211834 |