On the Higher Order Edge-Connectivity of Complete Multipartite Graphs

Let G be a connected graph with p ≥ 2 vertices. For k = 1, 2, ..., P-1, the Kth order edge-connectivity of G, denoted by A(K} (e), is defined to be the smallest number of edges whose removal from e leaves a graph with k + 1 connected components. In this note we determine A(K} (e) for any complete...

詳細記述

保存先:
書誌詳細
主要な著者: Peng, Y. H., Chen, C. C., Koh, K. M.
フォーマット: 論文
言語:English
English
出版事項: 1989
オンライン・アクセス:http://psasir.upm.edu.my/id/eprint/2765/1/On_the_Higher_Order_Edge-Connectivity_of.pdf
http://psasir.upm.edu.my/id/eprint/2765/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
id my.upm.eprints.2765
record_format eprints
spelling my.upm.eprints.27652013-05-27T07:03:20Z http://psasir.upm.edu.my/id/eprint/2765/ On the Higher Order Edge-Connectivity of Complete Multipartite Graphs Peng, Y. H. Chen, C. C. Koh, K. M. Let G be a connected graph with p ≥ 2 vertices. For k = 1, 2, ..., P-1, the Kth order edge-connectivity of G, denoted by A(K} (e), is defined to be the smallest number of edges whose removal from e leaves a graph with k + 1 connected components. In this note we determine A(K} (e) for any complete multi partite graph G as a consequence, we give a necessary and sufficient condition for the graph Gn to be factored into spanning trees. 1989 Article PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/2765/1/On_the_Higher_Order_Edge-Connectivity_of.pdf Peng, Y. H. and Chen, C. C. and Koh, K. M. (1989) On the Higher Order Edge-Connectivity of Complete Multipartite Graphs. Pertanika, 12 (1). pp. 83-88. English
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
English
description Let G be a connected graph with p ≥ 2 vertices. For k = 1, 2, ..., P-1, the Kth order edge-connectivity of G, denoted by A(K} (e), is defined to be the smallest number of edges whose removal from e leaves a graph with k + 1 connected components. In this note we determine A(K} (e) for any complete multi partite graph G as a consequence, we give a necessary and sufficient condition for the graph Gn to be factored into spanning trees.
format Article
author Peng, Y. H.
Chen, C. C.
Koh, K. M.
spellingShingle Peng, Y. H.
Chen, C. C.
Koh, K. M.
On the Higher Order Edge-Connectivity of Complete Multipartite Graphs
author_facet Peng, Y. H.
Chen, C. C.
Koh, K. M.
author_sort Peng, Y. H.
title On the Higher Order Edge-Connectivity of Complete Multipartite Graphs
title_short On the Higher Order Edge-Connectivity of Complete Multipartite Graphs
title_full On the Higher Order Edge-Connectivity of Complete Multipartite Graphs
title_fullStr On the Higher Order Edge-Connectivity of Complete Multipartite Graphs
title_full_unstemmed On the Higher Order Edge-Connectivity of Complete Multipartite Graphs
title_sort on the higher order edge-connectivity of complete multipartite graphs
publishDate 1989
url http://psasir.upm.edu.my/id/eprint/2765/1/On_the_Higher_Order_Edge-Connectivity_of.pdf
http://psasir.upm.edu.my/id/eprint/2765/
_version_ 1643822415438938112
score 13.250246