Effect of dietary n-6 to n-3 polyunsaturated fatty acid ratio on prostaglandin plasma levels and genes expression peroxisome proliferator-activated receptor (PPAR) in pregnant Sprague Dawley rats

The peroxisome proliferator-activated receptors (PPARs) are a family of nuclear transcription factors thought to act as receptors for polyunsaturated fatty acids and to reduce production of series 2 prostaglandins (PG). The objective of this study was to investigate the effect of different ratio n-6...

Full description

Saved in:
Bibliographic Details
Main Authors: Ali, Amira Abdulbari, Abu Bakar @ Zakaria, Md Zuki, Goh, Yong Meng, Mohamed Mustapha, Noordin
Format: Article
Language:English
Published: Academic Journals 2011
Online Access:http://psasir.upm.edu.my/id/eprint/25333/1/25333.pdf
http://psasir.upm.edu.my/id/eprint/25333/
http://www.academicjournals.org/journal/AJB/article-abstract/2B2382729852
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The peroxisome proliferator-activated receptors (PPARs) are a family of nuclear transcription factors thought to act as receptors for polyunsaturated fatty acids and to reduce production of series 2 prostaglandins (PG). The objective of this study was to investigate the effect of different ratio n-6: n-3 on the PPAR expression of rats endometrial tissue. The findings obtained from this study showed significant induction of PPARδ mRNA levels in endomatral cells treatment 1:1 group by 1.38 fold compared with the PPARδ mRNA levels in endomatral cells treatment 30:1 group. This induction was due to the cellular demands for prostaglandin were high in the endometrial cells when cells were treated with high ratio n6:n3 on 30:1 group, thus, resulting in an increase in both prostaglandin PGE2 and PGF2α production by induction of PPARδ genes. On the other hand, treatment 1:1 group and control group of endometrial cells did not show any significant changes in mRNA level of PPARδ, compared with treatment ratio n6:n3 on 6:1 group and treatment high ratio n6:n3 on 30:1 group of the endometrial cells. These findings show that inhibit ion of uterine PGF2α synthesis by n-3 fatty acids may depend on the amount of n-6 fatty acids reaching the target tissue. In conclusion, PPARδ function in the response of rat endometrium to long chain n-6:n3 polyunsaturated fatty acids.