Properties of kenaf (Hibiscus cannabinus L.) fibers and handsheets for linerboard production

In Malaysia, almost 50% of the total paper consumption comes from packaging paper such as kraft liner and medium corrugater. However, there is no local production of kraft pulp in Malaysia and this poses the highest potential for imports. On the other hand, the government of Malaysia has actively en...

Full description

Saved in:
Bibliographic Details
Main Author: Mosello, Ahmad Azizi
Format: Thesis
Language:English
English
Published: 2010
Online Access:http://psasir.upm.edu.my/id/eprint/22129/1/IPTPH%202010%203R.pdf
http://psasir.upm.edu.my/id/eprint/22129/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.upm.eprints.22129
record_format eprints
spelling my.upm.eprints.221292013-06-20T03:21:44Z http://psasir.upm.edu.my/id/eprint/22129/ Properties of kenaf (Hibiscus cannabinus L.) fibers and handsheets for linerboard production Mosello, Ahmad Azizi In Malaysia, almost 50% of the total paper consumption comes from packaging paper such as kraft liner and medium corrugater. However, there is no local production of kraft pulp in Malaysia and this poses the highest potential for imports. On the other hand, the government of Malaysia has actively encouraged the paper and paperboard industry to enhance self–sufficiency. The insufficiency in the supply of fiber for papermaking has necessitated the paper industry to search for alternative fiber. Kenaf has been identified as one of the potential sources for pulp fibers and some research have been carried out on locally available kenaf in the production of pulp and paper. The study was done in four steps to evaluate the suitability of Malaysian cultivated kenaf for linerboard production. First, the chemical and morphological properties of kenaf fractions were characterized. The chemical and morphological analysis indicated that bast and core fibers were significantly different. The core fraction with short and wide fibers had higher lignin, hemicelluloses and lower cellulose compared to the long and slender fiber in the bast fractions. In the second step, the pulping properties of different fractions of kenaf (core, bast, and whole stem) were studied. The pulping result showed that kenaf fractions gave high pulp yield (54.2-58.4%) with environment friendly soda-AQ pulping process at mild cooking condition. In comparison to core fibers, bast fibers were relatively easy to delignify and produced paper at higher freeness, lower drainage time and lower strength properties except for tear index. Moreover, due to higher freeness and lower drainage time, bast fibers had the potential to develop strength. Core pulp due to very low freeness and high drainage time was used as unbeaten pulp. Whole stem kenaf showed intermediate properties between core and bast. In the third step, pulp fractionation and sequence selective process was carried out as a new approach to use kenaf whole stem for paper and paperboard production. The result showed that fractionation and sequence selective process made a good opportunity to better beating and fibrillation long fiber at higher level of PFI revolution and remixing with unbeaten short fiber and produced paper with significantly higher strength and better drainability than unfractionated beaten whole stem. In the final part of this study, kenaf whole stem pulps were used to improve old corrugated containers board (OCC). The blending experiments led to the conclusion that fractionated pulp had better effect in the improvement of OCC than unfractionated pulp. In this part, kenaf whole stem pulps were compared to unbleached softwood kraft pulp and mechanical treatment (beating)to improve OCC. The result showed that addition 5-10% fractionated whole stem or unbleached softwood kraft pulp improved OCC properties same as when it was beaten with 2000 PFI revolution. Nonetheless, with better tear index and drainability. The overall conclusion is that, using whole stem, rather than separating the kenaf into bast and core fractions may reduce fiber supply costs for kenaf significantly which would represent a problem for the commercialization of the raw material. The extra processing steps involved in separation and pulping keeps kenaf from competing effectively with wood. The results discussed above demonstrate that most respects (strength properties and drainability) the whole stems are good for linerboard production or OCC improvement when fractionation and sequence selective process is used to improve strength properties. 2010-12 Thesis NonPeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/22129/1/IPTPH%202010%203R.pdf Mosello, Ahmad Azizi (2010) Properties of kenaf (Hibiscus cannabinus L.) fibers and handsheets for linerboard production. PhD thesis, Universiti Putra Malaysia. English
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
English
description In Malaysia, almost 50% of the total paper consumption comes from packaging paper such as kraft liner and medium corrugater. However, there is no local production of kraft pulp in Malaysia and this poses the highest potential for imports. On the other hand, the government of Malaysia has actively encouraged the paper and paperboard industry to enhance self–sufficiency. The insufficiency in the supply of fiber for papermaking has necessitated the paper industry to search for alternative fiber. Kenaf has been identified as one of the potential sources for pulp fibers and some research have been carried out on locally available kenaf in the production of pulp and paper. The study was done in four steps to evaluate the suitability of Malaysian cultivated kenaf for linerboard production. First, the chemical and morphological properties of kenaf fractions were characterized. The chemical and morphological analysis indicated that bast and core fibers were significantly different. The core fraction with short and wide fibers had higher lignin, hemicelluloses and lower cellulose compared to the long and slender fiber in the bast fractions. In the second step, the pulping properties of different fractions of kenaf (core, bast, and whole stem) were studied. The pulping result showed that kenaf fractions gave high pulp yield (54.2-58.4%) with environment friendly soda-AQ pulping process at mild cooking condition. In comparison to core fibers, bast fibers were relatively easy to delignify and produced paper at higher freeness, lower drainage time and lower strength properties except for tear index. Moreover, due to higher freeness and lower drainage time, bast fibers had the potential to develop strength. Core pulp due to very low freeness and high drainage time was used as unbeaten pulp. Whole stem kenaf showed intermediate properties between core and bast. In the third step, pulp fractionation and sequence selective process was carried out as a new approach to use kenaf whole stem for paper and paperboard production. The result showed that fractionation and sequence selective process made a good opportunity to better beating and fibrillation long fiber at higher level of PFI revolution and remixing with unbeaten short fiber and produced paper with significantly higher strength and better drainability than unfractionated beaten whole stem. In the final part of this study, kenaf whole stem pulps were used to improve old corrugated containers board (OCC). The blending experiments led to the conclusion that fractionated pulp had better effect in the improvement of OCC than unfractionated pulp. In this part, kenaf whole stem pulps were compared to unbleached softwood kraft pulp and mechanical treatment (beating)to improve OCC. The result showed that addition 5-10% fractionated whole stem or unbleached softwood kraft pulp improved OCC properties same as when it was beaten with 2000 PFI revolution. Nonetheless, with better tear index and drainability. The overall conclusion is that, using whole stem, rather than separating the kenaf into bast and core fractions may reduce fiber supply costs for kenaf significantly which would represent a problem for the commercialization of the raw material. The extra processing steps involved in separation and pulping keeps kenaf from competing effectively with wood. The results discussed above demonstrate that most respects (strength properties and drainability) the whole stems are good for linerboard production or OCC improvement when fractionation and sequence selective process is used to improve strength properties.
format Thesis
author Mosello, Ahmad Azizi
spellingShingle Mosello, Ahmad Azizi
Properties of kenaf (Hibiscus cannabinus L.) fibers and handsheets for linerboard production
author_facet Mosello, Ahmad Azizi
author_sort Mosello, Ahmad Azizi
title Properties of kenaf (Hibiscus cannabinus L.) fibers and handsheets for linerboard production
title_short Properties of kenaf (Hibiscus cannabinus L.) fibers and handsheets for linerboard production
title_full Properties of kenaf (Hibiscus cannabinus L.) fibers and handsheets for linerboard production
title_fullStr Properties of kenaf (Hibiscus cannabinus L.) fibers and handsheets for linerboard production
title_full_unstemmed Properties of kenaf (Hibiscus cannabinus L.) fibers and handsheets for linerboard production
title_sort properties of kenaf (hibiscus cannabinus l.) fibers and handsheets for linerboard production
publishDate 2010
url http://psasir.upm.edu.my/id/eprint/22129/1/IPTPH%202010%203R.pdf
http://psasir.upm.edu.my/id/eprint/22129/
_version_ 1643827742040391680
score 13.18916