Optimized Synthesis of Lipase-Catalyzed 3-O-(3',3'-Dimethylsuccinyl)-Betulinic Acid by Immobilised Novozyme 435

The derivative of betulinic acid, 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (5) was successfully synthesized by the reaction of betulinic acid and 2,2-dimethylsuccinic anhydride, catalyzed by immobilized lipase from Candida antartica (Novozyme 435) in chloroform. The structure of the pro...

Full description

Saved in:
Bibliographic Details
Main Author: Gunong @ Mohd Shah, Siti Aminah
Format: Thesis
Language:English
Published: 2010
Online Access:http://psasir.upm.edu.my/id/eprint/19583/1/FS_2010_33_F.pdf
http://psasir.upm.edu.my/id/eprint/19583/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.upm.eprints.19583
record_format eprints
spelling my.upm.eprints.195832015-05-19T02:47:32Z http://psasir.upm.edu.my/id/eprint/19583/ Optimized Synthesis of Lipase-Catalyzed 3-O-(3',3'-Dimethylsuccinyl)-Betulinic Acid by Immobilised Novozyme 435 Gunong @ Mohd Shah, Siti Aminah The derivative of betulinic acid, 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (5) was successfully synthesized by the reaction of betulinic acid and 2,2-dimethylsuccinic anhydride, catalyzed by immobilized lipase from Candida antartica (Novozyme 435) in chloroform. The structure of the product was determined by spectroscopic methods. Effects of different reaction parameters were investigated and optimized in the model reaction. Optimum conditions to produce 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (5) up to 78.1 % were observed at reaction time; 24 h, amount of enzyme; 100 mg, betulinic acid (1) (0.055 mmole) to 2,2-dimethylsuccinic anhydride (0.055 mmole) substrate molar ratio; 1:1 at 50 °C. Response surface methodology (RSM) based on a five-level, three variables and central composite rotatable design (CCRD) was employed to evaluate the interactive effects of the parameters used in the synthesis methodology such as reaction time, temperature and enzyme amount. It was observed that, simultaneous increase in reaction time, temperature and amount of enzyme will increase the yields of 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (5). Based on the analysis of ridge max, the optimum conditions for the synthesis of 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (5) were as follows: 53.6 °C of reaction temperature, 28.15 hours of reaction time and 122 mg of enzyme for 1.0 mmol of betulinic acid (1) and 1.0 mmol of 2,2-dimethylsuccinic anhydride. The optimum predicted for percentage yield was at 83.93 % in which agree well with the actual value of 84.38 %. In brief, the anticancer activity of betulinic acid (1) and 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (5) were evaluated against cultured human T-promyelocytic leukemia (HL-60), human breast cancer (MCF-7), human cervical carcinoma cancer (HeLa) and mouse embryonic fibroblast normal cell line (3T3) cells lines. In particular, 3-O-(3',3'-dimethylsuccinyl)-betulinic acid showed nontoxic activity against human T-promyeloctic leukemia (HL-60) and human breast cancer (MCF-7) with IC50 > 30 μg/ml. However, it has better activity against human cervical carcinoma cancer (HeLa) (IC50 1.9 μg/ml) compared to betulinic acid (IC50 4.8 μg/ml). Interestingly, both compound were highly inactive against mouse embryonic fibroblast normal cell line (3T3) with IC50 > 30 μg/ml. 2010-06 Thesis NonPeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/19583/1/FS_2010_33_F.pdf Gunong @ Mohd Shah, Siti Aminah (2010) Optimized Synthesis of Lipase-Catalyzed 3-O-(3',3'-Dimethylsuccinyl)-Betulinic Acid by Immobilised Novozyme 435. Masters thesis, Universiti Putra Malaysia.
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
description The derivative of betulinic acid, 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (5) was successfully synthesized by the reaction of betulinic acid and 2,2-dimethylsuccinic anhydride, catalyzed by immobilized lipase from Candida antartica (Novozyme 435) in chloroform. The structure of the product was determined by spectroscopic methods. Effects of different reaction parameters were investigated and optimized in the model reaction. Optimum conditions to produce 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (5) up to 78.1 % were observed at reaction time; 24 h, amount of enzyme; 100 mg, betulinic acid (1) (0.055 mmole) to 2,2-dimethylsuccinic anhydride (0.055 mmole) substrate molar ratio; 1:1 at 50 °C. Response surface methodology (RSM) based on a five-level, three variables and central composite rotatable design (CCRD) was employed to evaluate the interactive effects of the parameters used in the synthesis methodology such as reaction time, temperature and enzyme amount. It was observed that, simultaneous increase in reaction time, temperature and amount of enzyme will increase the yields of 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (5). Based on the analysis of ridge max, the optimum conditions for the synthesis of 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (5) were as follows: 53.6 °C of reaction temperature, 28.15 hours of reaction time and 122 mg of enzyme for 1.0 mmol of betulinic acid (1) and 1.0 mmol of 2,2-dimethylsuccinic anhydride. The optimum predicted for percentage yield was at 83.93 % in which agree well with the actual value of 84.38 %. In brief, the anticancer activity of betulinic acid (1) and 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (5) were evaluated against cultured human T-promyelocytic leukemia (HL-60), human breast cancer (MCF-7), human cervical carcinoma cancer (HeLa) and mouse embryonic fibroblast normal cell line (3T3) cells lines. In particular, 3-O-(3',3'-dimethylsuccinyl)-betulinic acid showed nontoxic activity against human T-promyeloctic leukemia (HL-60) and human breast cancer (MCF-7) with IC50 > 30 μg/ml. However, it has better activity against human cervical carcinoma cancer (HeLa) (IC50 1.9 μg/ml) compared to betulinic acid (IC50 4.8 μg/ml). Interestingly, both compound were highly inactive against mouse embryonic fibroblast normal cell line (3T3) with IC50 > 30 μg/ml.
format Thesis
author Gunong @ Mohd Shah, Siti Aminah
spellingShingle Gunong @ Mohd Shah, Siti Aminah
Optimized Synthesis of Lipase-Catalyzed 3-O-(3',3'-Dimethylsuccinyl)-Betulinic Acid by Immobilised Novozyme 435
author_facet Gunong @ Mohd Shah, Siti Aminah
author_sort Gunong @ Mohd Shah, Siti Aminah
title Optimized Synthesis of Lipase-Catalyzed 3-O-(3',3'-Dimethylsuccinyl)-Betulinic Acid by Immobilised Novozyme 435
title_short Optimized Synthesis of Lipase-Catalyzed 3-O-(3',3'-Dimethylsuccinyl)-Betulinic Acid by Immobilised Novozyme 435
title_full Optimized Synthesis of Lipase-Catalyzed 3-O-(3',3'-Dimethylsuccinyl)-Betulinic Acid by Immobilised Novozyme 435
title_fullStr Optimized Synthesis of Lipase-Catalyzed 3-O-(3',3'-Dimethylsuccinyl)-Betulinic Acid by Immobilised Novozyme 435
title_full_unstemmed Optimized Synthesis of Lipase-Catalyzed 3-O-(3',3'-Dimethylsuccinyl)-Betulinic Acid by Immobilised Novozyme 435
title_sort optimized synthesis of lipase-catalyzed 3-o-(3',3'-dimethylsuccinyl)-betulinic acid by immobilised novozyme 435
publishDate 2010
url http://psasir.upm.edu.my/id/eprint/19583/1/FS_2010_33_F.pdf
http://psasir.upm.edu.my/id/eprint/19583/
_version_ 1643827079535394816
score 13.160551