Removal of poly-histidine fusion tags from recombinant proteins purified by expanded bed adsorption

Enzymatic methods have been used to cleave the C- or N-terminus polyhistidine tags from histidine tagged proteins following expanded bed purification using immobilized metal affinitychromatography (IMAC). This study assesses the use of Factor Xa and a genetically engineered exopeptidase dipeptidyl a...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdullah, Norhafizah, Chase, Howard Allaker
Format: Article
Language:English
Published: Wiley Periodicals 2005
Online Access:http://psasir.upm.edu.my/id/eprint/18361/1/Removal%20of%20poly.pdf
http://psasir.upm.edu.my/id/eprint/18361/
http://onlinelibrary.wiley.com/wol1/doi/10.1002/bit.20633/abstract
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.upm.eprints.18361
record_format eprints
spelling my.upm.eprints.183612017-11-01T09:53:41Z http://psasir.upm.edu.my/id/eprint/18361/ Removal of poly-histidine fusion tags from recombinant proteins purified by expanded bed adsorption Abdullah, Norhafizah Chase, Howard Allaker Enzymatic methods have been used to cleave the C- or N-terminus polyhistidine tags from histidine tagged proteins following expanded bed purification using immobilized metal affinitychromatography (IMAC). This study assesses the use of Factor Xa and a genetically engineered exopeptidase dipeptidyl aminopeptidase-1 (DAPase-1)for the removal of C-terminusand N-terminus polyhistidine tags, respectively. Model proteins consisting of maltose binding protein (MBP) having a C- or N-terminal polyhistidine tag were used. Digestion of the hexahistidinetagofMBP-His6 by Factor Xa and HT 15-MBP by DAPase-1 was successful. The time taken to complete the conversion of MBP-HiS6 to MBP was 16 h, as judged by SDS-PAGE and Western blots against anti-His antibody. When the detagged protein was purified using subtractive IMAC, the yield was moderate at 71% although the overall recovery was high at 95%. Likewise, a yield of 79% and a recovery of 97% was obtained when digestion was performed with using "on-column" tag digestion. Oncolumn tag digestion involves cleavage of histidine tag from polyhistidine tagged proteins that are still bound to the IMAC column. Digestion of an N-terminal polyhistidine tag from HT15-MBP (1 mg/mL) by the DAPase-1 system was superiorto the results obtained with Factor Xa with a higher yield and recovery of 99% and 95%, respectively. The digestion by DAPase-1 system was faster and was complete at 5 h as opposed to 16 h for Factor Xa. The detagged MBP proteins were isolated from the digestion mixtures using a simple subtractive IMAC column procedure with the detagged protein appearing in the flowthrough and washing fractions while residual dipeptides and DAPase-1 (which was engineered to exhibit a poly-His tail) were adsorbed to the column. FPLC analysis using a MonoS cation exchanger was performed to understand and monitor the progress and time course of DAPase-1 digestion of HT15-MBP to MBP. Optimization of process variables such as temperature, protein concentration, and enzyme activity was developed for the DAPase-1 digesting system on HT15-MBP to MBP. In short, this study proved that the use of either Factor Xa or DAPase-l for the digestion of polyhistidine tags is simple and efficient and can be carried out under mild reaction conditions. Wiley Periodicals 2005-11 Article PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/18361/1/Removal%20of%20poly.pdf Abdullah, Norhafizah and Chase, Howard Allaker (2005) Removal of poly-histidine fusion tags from recombinant proteins purified by expanded bed adsorption. Biotechnology and Bioengineering, 92 (4). pp. 501-513. ISSN 0006-3592; ESSN: 1097-0290 http://onlinelibrary.wiley.com/wol1/doi/10.1002/bit.20633/abstract doi:10.1002/bit.20633
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
description Enzymatic methods have been used to cleave the C- or N-terminus polyhistidine tags from histidine tagged proteins following expanded bed purification using immobilized metal affinitychromatography (IMAC). This study assesses the use of Factor Xa and a genetically engineered exopeptidase dipeptidyl aminopeptidase-1 (DAPase-1)for the removal of C-terminusand N-terminus polyhistidine tags, respectively. Model proteins consisting of maltose binding protein (MBP) having a C- or N-terminal polyhistidine tag were used. Digestion of the hexahistidinetagofMBP-His6 by Factor Xa and HT 15-MBP by DAPase-1 was successful. The time taken to complete the conversion of MBP-HiS6 to MBP was 16 h, as judged by SDS-PAGE and Western blots against anti-His antibody. When the detagged protein was purified using subtractive IMAC, the yield was moderate at 71% although the overall recovery was high at 95%. Likewise, a yield of 79% and a recovery of 97% was obtained when digestion was performed with using "on-column" tag digestion. Oncolumn tag digestion involves cleavage of histidine tag from polyhistidine tagged proteins that are still bound to the IMAC column. Digestion of an N-terminal polyhistidine tag from HT15-MBP (1 mg/mL) by the DAPase-1 system was superiorto the results obtained with Factor Xa with a higher yield and recovery of 99% and 95%, respectively. The digestion by DAPase-1 system was faster and was complete at 5 h as opposed to 16 h for Factor Xa. The detagged MBP proteins were isolated from the digestion mixtures using a simple subtractive IMAC column procedure with the detagged protein appearing in the flowthrough and washing fractions while residual dipeptides and DAPase-1 (which was engineered to exhibit a poly-His tail) were adsorbed to the column. FPLC analysis using a MonoS cation exchanger was performed to understand and monitor the progress and time course of DAPase-1 digestion of HT15-MBP to MBP. Optimization of process variables such as temperature, protein concentration, and enzyme activity was developed for the DAPase-1 digesting system on HT15-MBP to MBP. In short, this study proved that the use of either Factor Xa or DAPase-l for the digestion of polyhistidine tags is simple and efficient and can be carried out under mild reaction conditions.
format Article
author Abdullah, Norhafizah
Chase, Howard Allaker
spellingShingle Abdullah, Norhafizah
Chase, Howard Allaker
Removal of poly-histidine fusion tags from recombinant proteins purified by expanded bed adsorption
author_facet Abdullah, Norhafizah
Chase, Howard Allaker
author_sort Abdullah, Norhafizah
title Removal of poly-histidine fusion tags from recombinant proteins purified by expanded bed adsorption
title_short Removal of poly-histidine fusion tags from recombinant proteins purified by expanded bed adsorption
title_full Removal of poly-histidine fusion tags from recombinant proteins purified by expanded bed adsorption
title_fullStr Removal of poly-histidine fusion tags from recombinant proteins purified by expanded bed adsorption
title_full_unstemmed Removal of poly-histidine fusion tags from recombinant proteins purified by expanded bed adsorption
title_sort removal of poly-histidine fusion tags from recombinant proteins purified by expanded bed adsorption
publisher Wiley Periodicals
publishDate 2005
url http://psasir.upm.edu.my/id/eprint/18361/1/Removal%20of%20poly.pdf
http://psasir.upm.edu.my/id/eprint/18361/
http://onlinelibrary.wiley.com/wol1/doi/10.1002/bit.20633/abstract
_version_ 1643826781256417280
score 13.18916