Microstructural and excess conductivity properties of Y-123: effect of organic polymer chitosan inclusion
This research investigated the effect of chitosan as fine nucleation for the interactions among surface microstructure, secondary phases, and thermodynamic fluctuations of superconducting parameters during the superconducting transitions in YBa2Cu3O7-δ (Y-123) system. The study involved incorporatin...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Published: |
Springer
2024
|
Online Access: | http://psasir.upm.edu.my/id/eprint/113596/ https://link.springer.com/article/10.1007/s10854-024-13161-8?error=cookies_not_supported&code=e9c14bc3-801a-4042-a399-fd9e1deabaf7 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.113596 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.1135962024-11-14T03:51:49Z http://psasir.upm.edu.my/id/eprint/113596/ Microstructural and excess conductivity properties of Y-123: effect of organic polymer chitosan inclusion Yap, Siew Hong Awang Kechik, Mohd Mustafa Khoerunnisa, Fitri Baqiah, Hussien Chen, Soo Kien Lim, Kean Pah Shabdin, Muhammad Kashfi Mohd Zaid, Mohd Hafiz Yaakob, Yazid Abdul Karim, Mohd Khalis Humaidi, Syahrul Shaari, Abdul Halim Miryala, Muralidhar This research investigated the effect of chitosan as fine nucleation for the interactions among surface microstructure, secondary phases, and thermodynamic fluctuations of superconducting parameters during the superconducting transitions in YBa2Cu3O7-δ (Y-123) system. The study involved incorporating various low concentrations (0.0100 wt.% ≤ x ≤ 0.6000 wt.%) of chitosan (CHI) extracted from marine waste into the Y-123 matrix through a thermal treatment method annealed in an oxygen atmosphere. XRD results showed that all specimens crystallized into orthorhombic Y-123 as the main phase, with non-superconducting phases such as Y-211 and BaCuO2. These additions introduced different trends in grain degradation and appearance of nano-entities within the Y-123 matrix system. Investigations into the excess conductivity through DC resistivity measurements of these bulk granular specimens revealed a complete reduction in inter-layer coupling while preserving oxygen content and grain size. Furthermore, superconducting transition temperatures (Tc-onset, Tc-offset), superconducting transition width (ΔTc), and intergranular current density at zero temperature (Jc(0)) experienced significant improvements at lower concentrations, reaching an optimum at 0.0100 wt.%. The Jc(0) reached its peak value at 8.17 × 106 A/m2 for the specimen with 0.0100 wt.% CHI addition annealed in an oxygen atmosphere. This research underscores the potential of a sustainable approach involving the incorporation of low-concentration organic polymer (CHI), aligning with the principles of green materials and the advancement of superconductivity. Springer 2024 Article PeerReviewed Yap, Siew Hong and Awang Kechik, Mohd Mustafa and Khoerunnisa, Fitri and Baqiah, Hussien and Chen, Soo Kien and Lim, Kean Pah and Shabdin, Muhammad Kashfi and Mohd Zaid, Mohd Hafiz and Yaakob, Yazid and Abdul Karim, Mohd Khalis and Humaidi, Syahrul and Shaari, Abdul Halim and Miryala, Muralidhar (2024) Microstructural and excess conductivity properties of Y-123: effect of organic polymer chitosan inclusion. Journal of Materials Science: Materials in Electronics, 35 (21). art. no. 1452. ISSN 0957-4522; eISSN: 1573-482X https://link.springer.com/article/10.1007/s10854-024-13161-8?error=cookies_not_supported&code=e9c14bc3-801a-4042-a399-fd9e1deabaf7 10.1007/s10854-024-13161-8 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
description |
This research investigated the effect of chitosan as fine nucleation for the interactions among surface microstructure, secondary phases, and thermodynamic fluctuations of superconducting parameters during the superconducting transitions in YBa2Cu3O7-δ (Y-123) system. The study involved incorporating various low concentrations (0.0100 wt.% ≤ x ≤ 0.6000 wt.%) of chitosan (CHI) extracted from marine waste into the Y-123 matrix through a thermal treatment method annealed in an oxygen atmosphere. XRD results showed that all specimens crystallized into orthorhombic Y-123 as the main phase, with non-superconducting phases such as Y-211 and BaCuO2. These additions introduced different trends in grain degradation and appearance of nano-entities within the Y-123 matrix system. Investigations into the excess conductivity through DC resistivity measurements of these bulk granular specimens revealed a complete reduction in inter-layer coupling while preserving oxygen content and grain size. Furthermore, superconducting transition temperatures (Tc-onset, Tc-offset), superconducting transition width (ΔTc), and intergranular current density at zero temperature (Jc(0)) experienced significant improvements at lower concentrations, reaching an optimum at 0.0100 wt.%. The Jc(0) reached its peak value at 8.17 × 106 A/m2 for the specimen with 0.0100 wt.% CHI addition annealed in an oxygen atmosphere. This research underscores the potential of a sustainable approach involving the incorporation of low-concentration organic polymer (CHI), aligning with the principles of green materials and the advancement of superconductivity. |
format |
Article |
author |
Yap, Siew Hong Awang Kechik, Mohd Mustafa Khoerunnisa, Fitri Baqiah, Hussien Chen, Soo Kien Lim, Kean Pah Shabdin, Muhammad Kashfi Mohd Zaid, Mohd Hafiz Yaakob, Yazid Abdul Karim, Mohd Khalis Humaidi, Syahrul Shaari, Abdul Halim Miryala, Muralidhar |
spellingShingle |
Yap, Siew Hong Awang Kechik, Mohd Mustafa Khoerunnisa, Fitri Baqiah, Hussien Chen, Soo Kien Lim, Kean Pah Shabdin, Muhammad Kashfi Mohd Zaid, Mohd Hafiz Yaakob, Yazid Abdul Karim, Mohd Khalis Humaidi, Syahrul Shaari, Abdul Halim Miryala, Muralidhar Microstructural and excess conductivity properties of Y-123: effect of organic polymer chitosan inclusion |
author_facet |
Yap, Siew Hong Awang Kechik, Mohd Mustafa Khoerunnisa, Fitri Baqiah, Hussien Chen, Soo Kien Lim, Kean Pah Shabdin, Muhammad Kashfi Mohd Zaid, Mohd Hafiz Yaakob, Yazid Abdul Karim, Mohd Khalis Humaidi, Syahrul Shaari, Abdul Halim Miryala, Muralidhar |
author_sort |
Yap, Siew Hong |
title |
Microstructural and excess conductivity properties of Y-123: effect of organic polymer chitosan inclusion |
title_short |
Microstructural and excess conductivity properties of Y-123: effect of organic polymer chitosan inclusion |
title_full |
Microstructural and excess conductivity properties of Y-123: effect of organic polymer chitosan inclusion |
title_fullStr |
Microstructural and excess conductivity properties of Y-123: effect of organic polymer chitosan inclusion |
title_full_unstemmed |
Microstructural and excess conductivity properties of Y-123: effect of organic polymer chitosan inclusion |
title_sort |
microstructural and excess conductivity properties of y-123: effect of organic polymer chitosan inclusion |
publisher |
Springer |
publishDate |
2024 |
url |
http://psasir.upm.edu.my/id/eprint/113596/ https://link.springer.com/article/10.1007/s10854-024-13161-8?error=cookies_not_supported&code=e9c14bc3-801a-4042-a399-fd9e1deabaf7 |
_version_ |
1816132749387366400 |
score |
13.223943 |