Generalised Autoregressive Conditional Heteroscedasticity (Garch) Models For Stock Market Volatility
The performance of generalised autoregressive conditional heteroscedasticity (GARCH) model and its modifications in forecasting stock market volatility are evaluated using the rate of returns from the daily stock market indices of Kuala Lumpur Stock Exchange (KLSE). These indices include Composi...
Saved in:
主要作者: | Choo, Wei Chong |
---|---|
格式: | Thesis |
語言: | English English |
出版: |
1998
|
在線閱讀: | http://psasir.upm.edu.my/id/eprint/11298/1/FSAS_1998_1_A.pdf http://psasir.upm.edu.my/id/eprint/11298/ |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Applying generalized autoregressive conditional heteroscedasticity models to model univariate volatility
由: Islam, Mohd Aminul
出版: (2014) -
Performance of GARCH models in forecasting stock market volatility.
由: Choo, Wei Chong, et al.
出版: (1999) -
Dividend study with alternative tests, panel data analysis and panel generalised autoregressive conditional heteroscedasticity
由: Ng, Chee Pung
出版: (2017) -
Modelling and Forecasting the Kuala Lumpur Composite Index Rate of Returns Using Generalised Autoregressive Conditional Heteroscedasticity Models
由: Abdul Muthalib, Maiyastri
出版: (2004) -
The volatility of the stock market and financial cycle : GARCH family models
由: Tran, Thuy Nhung
出版: (2022)