State-of-the-art ensemble learning and unsupervised learning in fatigue crack recognition of glass fiber reinforced polyester composite (GFRP) using acoustic emission
Fatigue strength is one of the most important properties of composite materials because it directly relates to their lifespan. Acoustic emission (AE) is a passive structural health monitoring (SHM) technique that provides real-time damage detection based on stress waves generated by cracks in the st...
保存先:
主要な著者: | , , |
---|---|
フォーマット: | 論文 |
出版事項: |
Elsevier
2023
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/109502/ https://linkinghub.elsevier.com/retrieve/pii/S0041624X23000744 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|