State-of-the-art ensemble learning and unsupervised learning in fatigue crack recognition of glass fiber reinforced polyester composite (GFRP) using acoustic emission

Fatigue strength is one of the most important properties of composite materials because it directly relates to their lifespan. Acoustic emission (AE) is a passive structural health monitoring (SHM) technique that provides real-time damage detection based on stress waves generated by cracks in the st...

Full description

Saved in:
Bibliographic Details
Main Authors: Gholizadeh, S., Leman, Z., Baharudin, B.T.H.T.
Format: Article
Published: Elsevier 2023
Online Access:http://psasir.upm.edu.my/id/eprint/109502/
https://linkinghub.elsevier.com/retrieve/pii/S0041624X23000744
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fatigue strength is one of the most important properties of composite materials because it directly relates to their lifespan. Acoustic emission (AE) is a passive structural health monitoring (SHM) technique that provides real-time damage detection based on stress waves generated by cracks in the structure. This study evaluates the damage progression on glass fiber reinforced polyester composite specimens using different approaches of machine learning. Different methodologies for damage detection and characterization of AE parameters are presented. Three different ensemble learning methods namely, XGboost, LightGBM, and CatBoost were chosen to predict damages and AE parameters. SHAP values were used to select AE key features and K-means algorithms were employed to classify damage severity. The accuracy of these approaches demonstrates the reliability of various machine learning techniques in predicting the fatigue life of composite materials using acoustic emission.