Effect of alumina (Al2O3) addition on the calcium fluoroaluminosilicate based bioglass ceramics derived from waste materials
Bioactive glass (BG) is well known as materials that have ability to form hydroxyapatite layer (HA) that accelerates bonding between bone tissues indicating a good biological response. However, previous BG with composition of SiO2-CaO-Na2O-P2O5 system exhibit lower mechanical strength. Current study...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
Elsevier
2022
|
Online Access: | http://psasir.upm.edu.my/id/eprint/101077/ https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4235082 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.101077 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.1010772023-05-24T04:09:32Z http://psasir.upm.edu.my/id/eprint/101077/ Effect of alumina (Al2O3) addition on the calcium fluoroaluminosilicate based bioglass ceramics derived from waste materials Ismail, Nur Quratul Aini Sa’at, Nor Kamilah Mohd Zaid, Mohd Hafiz Zainuddin, Norhazlin Mayzan, Mohd Zul Hilmi Bioactive glass (BG) is well known as materials that have ability to form hydroxyapatite layer (HA) that accelerates bonding between bone tissues indicating a good biological response. However, previous BG with composition of SiO2-CaO-Na2O-P2O5 system exhibit lower mechanical strength. Current study is to investigate the effect of alumina (Al2O3) in the 44SiO2-(20-x) Na2O-24CaO-6P2O5-6CaF2-xAl2O3 system where x = (0,3,6, and 9 wt%) towards its mechanical performance. Structural and microstructural factor were analyzed by x-ray diffraction (XRD) and scanning electron microscopy (SEM), meanwhile the density of glass ceramic samples was measured by Archimedes’ method. Subsequently, it was found that Al2O3 with higher composition that sintered at 950 °C has excellent results in term of density measurement. XRD analysis also has confirmed the increase of crystallization of anorthite, fluorapatite and nacaphite along with the rise of Al2O3 concentration. SEM analysis at the same time shows the morphology of agglomeration and irregular shape with a variation on size of sintered glass ceramics. Elsevier 2022-10 Article PeerReviewed Ismail, Nur Quratul Aini and Sa’at, Nor Kamilah and Mohd Zaid, Mohd Hafiz and Zainuddin, Norhazlin and Mayzan, Mohd Zul Hilmi (2022) Effect of alumina (Al2O3) addition on the calcium fluoroaluminosilicate based bioglass ceramics derived from waste materials. Social Science Research Network. pp. 1-9. ISSN 1556-5068 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4235082 10.2139/ssrn.4235082 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
description |
Bioactive glass (BG) is well known as materials that have ability to form hydroxyapatite layer (HA) that accelerates bonding between bone tissues indicating a good biological response. However, previous BG with composition of SiO2-CaO-Na2O-P2O5 system exhibit lower mechanical strength. Current study is to investigate the effect of alumina (Al2O3) in the 44SiO2-(20-x) Na2O-24CaO-6P2O5-6CaF2-xAl2O3 system where x = (0,3,6, and 9 wt%) towards its mechanical performance. Structural and microstructural factor were analyzed by x-ray diffraction (XRD) and scanning electron microscopy (SEM), meanwhile the density of glass ceramic samples was measured by Archimedes’ method. Subsequently, it was found that Al2O3 with higher composition that sintered at 950 °C has excellent results in term of density measurement. XRD analysis also has confirmed the increase of crystallization of anorthite, fluorapatite and nacaphite along with the rise of Al2O3 concentration. SEM analysis at the same time shows the morphology of agglomeration and irregular shape with a variation on size of sintered glass ceramics. |
format |
Article |
author |
Ismail, Nur Quratul Aini Sa’at, Nor Kamilah Mohd Zaid, Mohd Hafiz Zainuddin, Norhazlin Mayzan, Mohd Zul Hilmi |
spellingShingle |
Ismail, Nur Quratul Aini Sa’at, Nor Kamilah Mohd Zaid, Mohd Hafiz Zainuddin, Norhazlin Mayzan, Mohd Zul Hilmi Effect of alumina (Al2O3) addition on the calcium fluoroaluminosilicate based bioglass ceramics derived from waste materials |
author_facet |
Ismail, Nur Quratul Aini Sa’at, Nor Kamilah Mohd Zaid, Mohd Hafiz Zainuddin, Norhazlin Mayzan, Mohd Zul Hilmi |
author_sort |
Ismail, Nur Quratul Aini |
title |
Effect of alumina (Al2O3) addition on the calcium fluoroaluminosilicate based bioglass ceramics derived from waste materials |
title_short |
Effect of alumina (Al2O3) addition on the calcium fluoroaluminosilicate based bioglass ceramics derived from waste materials |
title_full |
Effect of alumina (Al2O3) addition on the calcium fluoroaluminosilicate based bioglass ceramics derived from waste materials |
title_fullStr |
Effect of alumina (Al2O3) addition on the calcium fluoroaluminosilicate based bioglass ceramics derived from waste materials |
title_full_unstemmed |
Effect of alumina (Al2O3) addition on the calcium fluoroaluminosilicate based bioglass ceramics derived from waste materials |
title_sort |
effect of alumina (al2o3) addition on the calcium fluoroaluminosilicate based bioglass ceramics derived from waste materials |
publisher |
Elsevier |
publishDate |
2022 |
url |
http://psasir.upm.edu.my/id/eprint/101077/ https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4235082 |
_version_ |
1768009433796837376 |
score |
13.22586 |