Magneto-rheological damper design characteristics for vehicle airbag replacement

Vehicle crashes continue to occur despite all the human efforts to prevent them resulting in injuries and loss of lives. The implementation of airbags has been shown to offer passenger safety in a collision. However, premature deployment and malfunction of airbag has resulted in fatalities and injur...

Full description

Saved in:
Bibliographic Details
Main Authors: Dhanaletchmi, N., Nagi, F.H., Ramasamy, A.K.
Format: Article
Language:English
Published: 2018
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-7333
record_format dspace
spelling my.uniten.dspace-73332018-12-14T00:23:54Z Magneto-rheological damper design characteristics for vehicle airbag replacement Dhanaletchmi, N. Nagi, F.H. Ramasamy, A.K. Vehicle crashes continue to occur despite all the human efforts to prevent them resulting in injuries and loss of lives. The implementation of airbags has been shown to offer passenger safety in a collision. However, premature deployment and malfunction of airbag has resulted in fatalities and injuries to drivers and front seat passengers. In this study, a magnetorheological (MR) damper is used as a replacement of airbag in vehicles to serve as a protective system. MR damper is a smart damping device which can be programmed to dynamically absorb shocks and high impact force when used in application such as passenger cars. In this paper, G-force profile of the airbag vehicle crashing system is compared with the G-force profile obtained from the MR damper vehicle crashing system. Subsequently, for this purpose MR damper characteristics are designed and Fuzzy Logic Controller (FLC) and Proportional Integral Derivative (PID) controller are proposed for MR damper current control. Simulation results proved that fuzzy based MR damper system yields better results compared to PID based MR damper system and airbag vehicle crashing system. © 2017 Inderscience Enterprises Ltd. 2018-01-11T09:39:02Z 2018-01-11T09:39:02Z 2017 Article 10.1504/IJVS.2017.087165 en
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
language English
description Vehicle crashes continue to occur despite all the human efforts to prevent them resulting in injuries and loss of lives. The implementation of airbags has been shown to offer passenger safety in a collision. However, premature deployment and malfunction of airbag has resulted in fatalities and injuries to drivers and front seat passengers. In this study, a magnetorheological (MR) damper is used as a replacement of airbag in vehicles to serve as a protective system. MR damper is a smart damping device which can be programmed to dynamically absorb shocks and high impact force when used in application such as passenger cars. In this paper, G-force profile of the airbag vehicle crashing system is compared with the G-force profile obtained from the MR damper vehicle crashing system. Subsequently, for this purpose MR damper characteristics are designed and Fuzzy Logic Controller (FLC) and Proportional Integral Derivative (PID) controller are proposed for MR damper current control. Simulation results proved that fuzzy based MR damper system yields better results compared to PID based MR damper system and airbag vehicle crashing system. © 2017 Inderscience Enterprises Ltd.
format Article
author Dhanaletchmi, N.
Nagi, F.H.
Ramasamy, A.K.
spellingShingle Dhanaletchmi, N.
Nagi, F.H.
Ramasamy, A.K.
Magneto-rheological damper design characteristics for vehicle airbag replacement
author_facet Dhanaletchmi, N.
Nagi, F.H.
Ramasamy, A.K.
author_sort Dhanaletchmi, N.
title Magneto-rheological damper design characteristics for vehicle airbag replacement
title_short Magneto-rheological damper design characteristics for vehicle airbag replacement
title_full Magneto-rheological damper design characteristics for vehicle airbag replacement
title_fullStr Magneto-rheological damper design characteristics for vehicle airbag replacement
title_full_unstemmed Magneto-rheological damper design characteristics for vehicle airbag replacement
title_sort magneto-rheological damper design characteristics for vehicle airbag replacement
publishDate 2018
_version_ 1644494166436085760
score 13.160551