Charge equalization controller algorithm for series-connected lithium-ion battery storage systems: Modeling and applications

This study aims to develop an accurate model of a charge equalization controller (CEC) that manages individual cell monitoring and equalizing by charging and discharging series-connected lithium-ion (Li-ion) battery cells. In this concept, an intelligent control algorithm is developed to activate bi...

Full description

Saved in:
Bibliographic Details
Main Authors: Hannan, M.A., Hoque, M.M., Ker, P.J., Begum, R.A., Mohamed, A.
Format: Article
Language:en_US
Published: 2017
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-5969
record_format dspace
spelling my.uniten.dspace-59692018-02-07T02:04:11Z Charge equalization controller algorithm for series-connected lithium-ion battery storage systems: Modeling and applications Hannan, M.A. Hoque, M.M. Ker, P.J. Begum, R.A. Mohamed, A. This study aims to develop an accurate model of a charge equalization controller (CEC) that manages individual cell monitoring and equalizing by charging and discharging series-connected lithium-ion (Li-ion) battery cells. In this concept, an intelligent control algorithm is developed to activate bidirectional cell switches and control direct current (DC)-DC converter switches along with pulse width modulation (PWM) generation. Individual models of an electric vehicle (EV)-sustainable Li-ion battery, optimal power rating, a bidirectional flyback DC-DC converter, and charging and discharging controllers are integrated to develop a small-scale CEC model that can be implemented for 10 series-connected Li-ion battery cells. Results show that the charge equalization controller operates at 91% efficiency and performs well in equalizing both overdischarged and overcharged cells on time. Moreover, the outputs of the CEC model show that the desired balancing level occurs at 2% of state of charge difference and that all cells are operated within a normal range. The configuration, execution, control, power loss, cost, size, and efficiency of the developed CEC model are compared with those of existing controllers. The proposed model is proven suitable for high-tech storage systems toward the advancement of sustainable EV technologies and renewable source of applications. © 2017 by the authors. Licensee MDPI. 2017-12-08T07:48:04Z 2017-12-08T07:48:04Z 2017 Article 10.3390/en10091390 en_US Charge equalization controller algorithm for series-connected lithium-ion battery storage systems: Modeling and applications. Energies, 10(9), [1390]
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
language en_US
description This study aims to develop an accurate model of a charge equalization controller (CEC) that manages individual cell monitoring and equalizing by charging and discharging series-connected lithium-ion (Li-ion) battery cells. In this concept, an intelligent control algorithm is developed to activate bidirectional cell switches and control direct current (DC)-DC converter switches along with pulse width modulation (PWM) generation. Individual models of an electric vehicle (EV)-sustainable Li-ion battery, optimal power rating, a bidirectional flyback DC-DC converter, and charging and discharging controllers are integrated to develop a small-scale CEC model that can be implemented for 10 series-connected Li-ion battery cells. Results show that the charge equalization controller operates at 91% efficiency and performs well in equalizing both overdischarged and overcharged cells on time. Moreover, the outputs of the CEC model show that the desired balancing level occurs at 2% of state of charge difference and that all cells are operated within a normal range. The configuration, execution, control, power loss, cost, size, and efficiency of the developed CEC model are compared with those of existing controllers. The proposed model is proven suitable for high-tech storage systems toward the advancement of sustainable EV technologies and renewable source of applications. © 2017 by the authors. Licensee MDPI.
format Article
author Hannan, M.A.
Hoque, M.M.
Ker, P.J.
Begum, R.A.
Mohamed, A.
spellingShingle Hannan, M.A.
Hoque, M.M.
Ker, P.J.
Begum, R.A.
Mohamed, A.
Charge equalization controller algorithm for series-connected lithium-ion battery storage systems: Modeling and applications
author_facet Hannan, M.A.
Hoque, M.M.
Ker, P.J.
Begum, R.A.
Mohamed, A.
author_sort Hannan, M.A.
title Charge equalization controller algorithm for series-connected lithium-ion battery storage systems: Modeling and applications
title_short Charge equalization controller algorithm for series-connected lithium-ion battery storage systems: Modeling and applications
title_full Charge equalization controller algorithm for series-connected lithium-ion battery storage systems: Modeling and applications
title_fullStr Charge equalization controller algorithm for series-connected lithium-ion battery storage systems: Modeling and applications
title_full_unstemmed Charge equalization controller algorithm for series-connected lithium-ion battery storage systems: Modeling and applications
title_sort charge equalization controller algorithm for series-connected lithium-ion battery storage systems: modeling and applications
publishDate 2017
_version_ 1644493812337213440
score 13.214268