Modeling anomalous transport in fractal porous media: A study of fractional diffusion PDEs using numerical method

Fractional diffusion partial differential equation (PDE) models are used to describe anomalous transport phenomena in fractal porous media, where traditional diffusion models may not be applicable due to the presence of long-range dependencies and non-local behaviors. This study presents an efficien...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmad I., Mekawy I., Khan M.N., Jan R., Boulaaras S.
Other Authors: 57220824630
Format: Article
Published: Walter de Gruyter GmbH 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-37136
record_format dspace
spelling my.uniten.dspace-371362025-03-03T15:47:52Z Modeling anomalous transport in fractal porous media: A study of fractional diffusion PDEs using numerical method Ahmad I. Mekawy I. Khan M.N. Jan R. Boulaaras S. 57220824630 57222488593 57205304990 57205596279 36994353700 Diffusion in liquids Fractals Heat conduction Heat convection Image segmentation Partial differential equations Porous materials Radial basis function networks Base function Convection-diffusion models Fractional derivatives Hybrid multiquadric-cubic radial base function Meshless collocation methods Modeling equations Multi terms Multiquadrics Multiterm time-fractional convection-diffusion model equation Radial basis Numerical methods Fractional diffusion partial differential equation (PDE) models are used to describe anomalous transport phenomena in fractal porous media, where traditional diffusion models may not be applicable due to the presence of long-range dependencies and non-local behaviors. This study presents an efficient hybrid meshless method to the compute numerical solution of a two-dimensional multiterm time-fractional convection-diffusion equation. The proposed meshless method employs multiquadric-cubic radial basis functions for the spatial derivatives, and the Liouville-Caputo derivative technique is used for the time derivative portion of the model equation. The accuracy of the method is evaluated using error norms, and a comparison is made with the exact solution. The numerical results demonstrate that the suggested approach achieves better accuracy and computationally efficient performance. ? 2024 the author(s), published by De Gruyter. Final 2025-03-03T07:47:52Z 2025-03-03T07:47:52Z 2024 Article 10.1515/nleng-2022-0366 2-s2.0-85187712625 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85187712625&doi=10.1515%2fnleng-2022-0366&partnerID=40&md5=4f7a65a7a9b85666e1bcb0fe603dbc25 https://irepository.uniten.edu.my/handle/123456789/37136 13 1 20220366 All Open Access; Gold Open Access Walter de Gruyter GmbH Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
topic Diffusion in liquids
Fractals
Heat conduction
Heat convection
Image segmentation
Partial differential equations
Porous materials
Radial basis function networks
Base function
Convection-diffusion models
Fractional derivatives
Hybrid multiquadric-cubic radial base function
Meshless collocation methods
Modeling equations
Multi terms
Multiquadrics
Multiterm time-fractional convection-diffusion model equation
Radial basis
Numerical methods
spellingShingle Diffusion in liquids
Fractals
Heat conduction
Heat convection
Image segmentation
Partial differential equations
Porous materials
Radial basis function networks
Base function
Convection-diffusion models
Fractional derivatives
Hybrid multiquadric-cubic radial base function
Meshless collocation methods
Modeling equations
Multi terms
Multiquadrics
Multiterm time-fractional convection-diffusion model equation
Radial basis
Numerical methods
Ahmad I.
Mekawy I.
Khan M.N.
Jan R.
Boulaaras S.
Modeling anomalous transport in fractal porous media: A study of fractional diffusion PDEs using numerical method
description Fractional diffusion partial differential equation (PDE) models are used to describe anomalous transport phenomena in fractal porous media, where traditional diffusion models may not be applicable due to the presence of long-range dependencies and non-local behaviors. This study presents an efficient hybrid meshless method to the compute numerical solution of a two-dimensional multiterm time-fractional convection-diffusion equation. The proposed meshless method employs multiquadric-cubic radial basis functions for the spatial derivatives, and the Liouville-Caputo derivative technique is used for the time derivative portion of the model equation. The accuracy of the method is evaluated using error norms, and a comparison is made with the exact solution. The numerical results demonstrate that the suggested approach achieves better accuracy and computationally efficient performance. ? 2024 the author(s), published by De Gruyter.
author2 57220824630
author_facet 57220824630
Ahmad I.
Mekawy I.
Khan M.N.
Jan R.
Boulaaras S.
format Article
author Ahmad I.
Mekawy I.
Khan M.N.
Jan R.
Boulaaras S.
author_sort Ahmad I.
title Modeling anomalous transport in fractal porous media: A study of fractional diffusion PDEs using numerical method
title_short Modeling anomalous transport in fractal porous media: A study of fractional diffusion PDEs using numerical method
title_full Modeling anomalous transport in fractal porous media: A study of fractional diffusion PDEs using numerical method
title_fullStr Modeling anomalous transport in fractal porous media: A study of fractional diffusion PDEs using numerical method
title_full_unstemmed Modeling anomalous transport in fractal porous media: A study of fractional diffusion PDEs using numerical method
title_sort modeling anomalous transport in fractal porous media: a study of fractional diffusion pdes using numerical method
publisher Walter de Gruyter GmbH
publishDate 2025
_version_ 1826077350052233216
score 13.244413