Reliable Fuzzy-Based Multi-Path Routing Protocol Based on Whale Optimization Algorithm to Improve QOS in 5G Networks for IOMT Applications
The Internet of Medical Things (IoMT) faces stiff competition from the 5th Generation (5G) communication standard, which includes attributes like short and long transmission ranges, Device to Device (D2D) connectivity, low latency, and high node density. To function in the linked ecosystem, IoMT bas...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
International Association of Online Engineering
2024
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Internet of Medical Things (IoMT) faces stiff competition from the 5th Generation (5G) communication standard, which includes attributes like short and long transmission ranges, Device to Device (D2D) connectivity, low latency, and high node density. To function in the linked ecosystem, IoMT based on 5G is anticipated to have a diversity of energy and mobility. It is currently difficult to create an IoMT routing system based on 5G that maximizes energy efficiency, lowers transmission latency, and increases network lifespan. The "Quality of Services (QoS)" in 5G-based IoMT is improved by the Reliable Fuzzy-based Multi-path routing system shown in this study. The Whale Optimization Algorithm (WOA) enhances the routing protocol performance. The residual energy-based Cluster Head (CH) selection strategy rotates the CH location among nodes with greater energy levels than the others. The method chooses the following set of CHs for the network that is suitable for IoMT applications by considering initial energy, residual energy, and an ideal value of CHs. According to the simulation results, our suggested routing technique enhances QoS in comparison to current approaches. � 2023,International Journal of Interactive Mobile Technologies. All Rights Reserved. |
---|