Malware Detection Using Deep Learning and Correlation-Based Feature Selection
Malware is one of the most frequent cyberattacks, with its prevalence growing daily across the network. Malware traffic is always asymmetrical compared to benign traffic, which is always symmetrical. Fortunately, there are many artificial intelligence techniques that can be used to detect malware an...
保存先:
主要な著者: | Alomari E.S., Nuiaa R.R., Alyasseri Z.A.A., Mohammed H.J., Sani N.S., Esa M.I., Musawi B.A. |
---|---|
その他の著者: | 58668473000 |
フォーマット: | 論文 |
出版事項: |
MDPI
2024
|
主題: | |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
A Hybrid Cracked Tiers Detection System Based on Adaptive Correlation Features Selection and Deep Belief Neural Networks
著者:: Al-juboori A.M., 等
出版事項: (2024) -
Obfuscated Malware Detection: Impacts on Detection Methods
著者:: Gorment N.Z., 等
出版事項: (2024) -
A Lightweight malware detection technique based on hybrid fuzzy simulated annealing clustering in Android apps
著者:: Chimeleze C., 等
出版事項: (2025) -
Fraud detection by machine learning techniques
著者:: Khai, Wah Khaw, 等
出版事項: (2023) -
Prediction of Covid-19 Cases for Malaysia, Egypt, and USA using Deep Learning Models
著者:: Hasan R.A., 等
出版事項: (2024)