River Water Quality Prediction and Analysis�Deep Learning Predictive Models Approach

In depth research about river water qualities are no more outlandish nowadays due to river water pollutions and contaminations. In order to have an accurate and precise measurement taken towards these river water pollution, advanced and new technologies need to be applied rather than old technique o...

Full description

Saved in:
Bibliographic Details
Main Authors: Rizal N.N.M., Hayder G., Yussof S.
Other Authors: 57654708600
Format: Conference Paper
Published: Springer Nature 2024
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In depth research about river water qualities are no more outlandish nowadays due to river water pollutions and contaminations. In order to have an accurate and precise measurement taken towards these river water pollution, advanced and new technologies need to be applied rather than old technique of everyday lab testing. Therefore, with the usage of deep learning predictive models approach, the decision makers able to provide immediate response and give precautionary measures to prevent a disastrous event. In the current research, Adaptive Neuro-fuzzy Inference System (ANFIS) has been used to predict six different types of river water quality parameters at Langat River, Malaysia. Root mean square error (RMSE) and determination of coefficient (R2) were used to assess the performances of the models. The results have been proven that ANFIS able to predict the parameters of river water quality as ANFIS Model 5 has achieved the highest value of R2 (0.9712). It also obtained the low values of RMSE which were 0.0028, 0.0144 and 0.0924 for training, testing and checking data sets, respectively. Overall, the six ANFIS models have successfully predict six different water quality parameters. � 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.