Optimal Strategy for Comfort-Based Home Energy Management System Considering Impact of Battery Degradation Cost Model

With the deployment of renewable energy generation, home energy storage systems (HESSs), and plug-in electric vehicles (PEVs), home energy management systems (HEMSs) are critical for end users to improve the increasingly complicated energy production and consumption in the home. However, few of the...

Full description

Saved in:
Bibliographic Details
Main Authors: Han B., Zahraoui Y., Mubin M., Mekhilef S., Seyedmahmoudian M., Stojcevski A.
Other Authors: 58128219400
Format: Article
Published: MDPI 2024
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the deployment of renewable energy generation, home energy storage systems (HESSs), and plug-in electric vehicles (PEVs), home energy management systems (HEMSs) are critical for end users to improve the increasingly complicated energy production and consumption in the home. However, few of the previous works study the impact of different models of battery degradation cost in the optimization strategy of a comfort-based HEMS framework. In this paper, a novel scheduling algorithm based on a mixed-integer programming (MIP) model is proposed for the HEMS. Total cost minimization, peak load shifting, and residents� thermal comfort satisfaction are combined and considered in the optimal scheduling algorithm. The impact of battery degradation costs on the charging and discharging strategy of HESS and PEV is also compared and discussed in this case study. This case study shows that the proposed optimal algorithm of HEMS not only flattens the peak load and satisfies the thermal comfort of residents but also has better flexibility and economic advantages, reducing the electricity cost by 30.84% and total cost by 24.16%. The sensitivity analysis of the parameters for the charging and discharging strategy also guarantees the lowest cost and prolongs the service life of the battery. � 2023 by the authors.