Microalgal Growth and Nutrient Removal Efficiency in Non-Sterilised Primary Domestic Wastewater
Microalgae biomass can produce high quantities of biochemicals that can be used in various applications such as biodiesel, biogas, and aquaculture feed. The potential of sterilizing wastewater for microalgae-based wastewater treatment on a lab scale is well introduced. However, the operation cost fo...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
MDPI
2024
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microalgae biomass can produce high quantities of biochemicals that can be used in various applications such as biodiesel, biogas, and aquaculture feed. The potential of sterilizing wastewater for microalgae-based wastewater treatment on a lab scale is well introduced. However, the operation cost for large-scale microalgae cultivation in wastewater treatment plants is high if using sterilising wastewater as the growth medium. The present study aimed to evaluate the growth of Scenedesmus sp., Chlorococcum aquaticum, Ankistrodesmus augustus, and Haematococcus pluvialis in non-sterilised domestic wastewater and their potential for pollutant removal in wastewater. The microalgae were cultivated in different concentrations of non-sterilised domestic wastewater, collected from a primary wastewater plant of a national sewerage company in Malaysia. Each species� capacity for growth and the removal of pollutants were assessed. The results showed that the cell density, maximum biomass productivity, and biomass concentration of H. pluvialis, Scenedesmus sp., and C. aquaticum in 100% wastewater were significantly higher than the standard medium. Higher biomass concentration was obtained from H. pluvialis and C. aquaticum in 100% wastewater (815 g/L and 775.83 mg/L) |
---|