Prediction of meteorological drought and standardized precipitation index based on the random forest (RF), random tree (RT), and Gaussian process regression (GPR) models
Agriculture, meteorological, and hydrological drought is a natural hazard which affects ecosystems in the central India of Maharashtra state. Due to limited historical data for drought monitoring and forecasting available in the central India of Maharashtra state, implementing machine learning (ML)...
محفوظ في:
المؤلفون الرئيسيون: | Elbeltagi A., Pande C.B., Kumar M., Tolche A.D., Singh S.K., Kumar A., Vishwakarma D.K. |
---|---|
مؤلفون آخرون: | 57204724397 |
التنسيق: | مقال |
منشور في: |
Springer Science and Business Media Deutschland GmbH
2024
|
الموضوعات: | |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Modeling of standardized groundwater index of Bihar using machine learning techniques
بواسطة: Kumari S., وآخرون
منشور في: (2024) -
Combination of data-driven models and best subset regression for predicting the standardized precipitation index (SPI) at the Upper Godavari Basin in India
بواسطة: Pande C.B., وآخرون
منشور في: (2024) -
Forecasting of meteorological drought using ensemble and machine learning models
بواسطة: Pande C.B., وآخرون
منشور في: (2025) -
Space�time heterogeneity of drought characteristics in Sabah and Sarawak, East Malaysia: implications for developing effective drought monitoring and mitigation strategies
بواسطة: Huang Y.F., وآخرون
منشور في: (2024) -
Comparative assessment of drought indices for evaluating drought patterns in Peninsular Malaysia
بواسطة: Ng J.L., وآخرون
منشور في: (2024)