Evaluating the Efficacy of Intelligent Methods for Maximum Power Point Tracking in Wind Energy Harvesting Systems

As wind energy is widely available, an increasing number of individuals, especially in off-grid rural areas, are adopting it as a dependable and sustainable energy source. The energy of the wind is harvested through a device known as a wind energy harvesting system (WEHS). These systems convert the...

Full description

Saved in:
Bibliographic Details
Main Authors: Umar D.A., Alkawsi G., Jailani N.L.M., Alomari M.A., Baashar Y., Alkahtani A.A., Capretz L.F., Tiong S.K.
Other Authors: 57218304981
Format: Review
Published: Multidisciplinary Digital Publishing Institute (MDPI) 2024
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As wind energy is widely available, an increasing number of individuals, especially in off-grid rural areas, are adopting it as a dependable and sustainable energy source. The energy of the wind is harvested through a device known as a wind energy harvesting system (WEHS). These systems convert the kinetic energy of wind into electrical energy using wind turbines (WT) and electrical generators. However, the output power of a wind turbine is affected by various factors, such as wind speed, wind direction, and generator design. In order to optimize the performance of a WEHS, it is important to track the maximum power point (MPP) of the system. Various methods of tracking the MPP of the WEHS have been proposed by several research articles, which include traditional techniques such as direct power control (DPC) and indirect power control (IPC). These traditional methods in the standalone form are characterized by some drawbacks which render the method ineffective. The hybrid techniques comprising two different maximum power point tracking (MPPT) algorithms were further proposed to eliminate the shortages. Furtherly, Artificial Intelligence (AI)-based MPPT algorithms were proposed for the WEHS as either standalone or integrated with the traditional MPPT methods. Therefore, this research focused on the review of the AI-based MPPT and their performances as applied to WEHS. Traditional MPPT methods that are studied in the previous articles were discussed briefly. In addition, AI-based MPPT and different hybrid methods were also discussed in detail. Our study highlights the effectiveness of AI-based MPPT techniques in WEHS using an artificial neural network (ANN), fuzzy logic controller (FLC), and particle swarm optimization (PSO). These techniques were applied either as standalone methods or in various hybrid combinations, resulting in a significant increase in the system�s power extraction performance. Our findings suggest that utilizing AI-based MPPT techniques can improve the efficiency and overall performance of WEHS, providing a promising solution for enhancing renewable energy systems. � 2023 by the authors.