Substitution of diesel fuel in conventional compression ignition engine with waste biomass-based fuel and its validation using artificial neural networks

This study aims to derive bioenergy from waste lather fat and citronella grass. Lather fat oil (LFO), citronella grass oil (CGO), a mixture of leather fat oil and citronella grass oil (LFCGO), and a nano-additive-incorporated mixture of lather fat oil and citronella grass oil (NFCO) were synthesized...

Full description

Saved in:
Bibliographic Details
Main Authors: Ramalingam K., Venkatesan E.P., Vellaiyan S., Mukhtar A., Sharifpur M., Yasir A.S.H.M., Saleel C.A.
Other Authors: 57307229100
Format: Article
Published: Institution of Chemical Engineers 2024
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aims to derive bioenergy from waste lather fat and citronella grass. Lather fat oil (LFO), citronella grass oil (CGO), a mixture of leather fat oil and citronella grass oil (LFCGO), and a nano-additive-incorporated mixture of lather fat oil and citronella grass oil (NFCO) were synthesized and used in diesel engines as the novelty of this study. ASTM standards were used to investigate and guarantee the fuel's properties. According to the experimental report, the nanoadditive's brake thermal efficiency and brake-specific fuel consumption were more comparable to diesel fuel. Compared to diesel, the NFCO blend reduced hydrocarbon, carbon monoxide, and particulate emissions by 6.48%, 12.33%, and 16.66%, respectively, while carbon dioxide and oxides of nitrogen emissions increased. The experiment's outcomes were verified using an artificial neural network (ANN). The trained model exhibits a remarkable coefficient of determination of 98%, with high R values varying from 0.9075 to 0.9998 and low mean absolute percentage error values ranging from 0.97% to 4.24%. Based on the experimental findings and validation report, it can be concluded that NFCO is an efficient diesel fuel substitute. � 2023 The Authors