A machine learning-based comparative analysis of surrogate models for design optimisation in computational fluid dynamics

Complex computer codes are frequently used in engineering to generate outputs based on inputs, which can make it difficult for designers to understand the relationship between inputs and outputs and to determine the best input values. One solution to this issue is to use design of experiments (DOE)...

詳細記述

保存先:
書誌詳細
主要な著者: Mukhtar A., Yasir A.S.H.M., Nasir M.F.M.
その他の著者: 57195426549
フォーマット: 論文
出版事項: Elsevier Ltd 2024
主題:
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!