Low-dimensional nanomaterials for nanofluids: a review of heat transfer enhancement
Low-dimensional nanomaterials are zero-, one- and two-dimensional nanomaterials, in which the aspect ratio and surface-to-volume ratio vary as the dimension varies. In nanofluids, suspended nanomaterials� movement in the base fluid can be due to Brownian motion and thermophoresis effect, which cause...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Review |
Published: |
Springer Science and Business Media B.V.
2024
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Low-dimensional nanomaterials are zero-, one- and two-dimensional nanomaterials, in which the aspect ratio and surface-to-volume ratio vary as the dimension varies. In nanofluids, suspended nanomaterials� movement in the base fluid can be due to Brownian motion and thermophoresis effect, which causes heat transfer. However, the emergence of nanomaterials with various dimensions has led to more advanced heat transfer mechanisms. The high aspect ratio and surface-to-volume ratio of the nanomaterials are believed to be among the factors in nanofluids� properties enhancement. However, the morphological effect on the heat transfer enhancement in nanofluids is still ambiguous. Hence, this paper aims to explore this significant gap by reviewing the reports that investigate the effect of morphology to the heat transfer enhancement in nanofluids containing low-dimensional nanomaterials and observe the trend. The heat transfer mechanisms in nanofluids are discussed to improve understanding of the phenomena, including its methods of study. This review also includes the material characterization techniques since these approaches can provide morphological information |
---|