Usage count of hydrogen-based hybrid energy storage systems: An analytical review, challenges and future research potentials
Electricity generation and consumption must undergo a substantial transformation as part of the global energy transition towards decarbonization. Hydrogen-based hybrid energy storage systems (HESS) have the potential to replace the existing fossil fuel-based energy generation due to their high energ...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Review |
Published: |
Elsevier Ltd
2024
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-34004 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-340042024-10-14T11:17:38Z Usage count of hydrogen-based hybrid energy storage systems: An analytical review, challenges and future research potentials Wali S.B. Hannan M.A. Abd Rahman M.S. Alghamdi H.A. Mansor M. Ker P.J. Tiong S.K. Mahlia T.M.I. 56402940200 7103014445 36609854400 55550194500 6701749037 37461740800 15128307800 56997615100 Decarbonization Hybrid energy storage system Hydrogen storage Optimization Usage count Decarbonization Electric energy storage Environmental impact Fossil fuels Analytical reviews Citation analysis Decarbonisation Electricity-consumption Electricity-generation Global energy Hybrid energy storage systems Optimisations Research potential Usage count Hydrogen storage Electricity generation and consumption must undergo a substantial transformation as part of the global energy transition towards decarbonization. Hydrogen-based hybrid energy storage systems (HESS) have the potential to replace the existing fossil fuel-based energy generation due to their high energy density and long storage capacity. This study has introduced a novel indicator �usage count� instead of �citation analysis� to obtain the top 100 articles in the field of hydrogen-based HESS because of the factors such as reduction of time lag, recentness and domain independency. After the filtration process, the top 100 articles with the highest usage count are obtained by providing an extensive search in the Scopus database from the year 2012�2021. An extensive comparative study between �usage count� and �citation analysis� among the selected top 100 articles is provided. Moreover, a detailed keyword co-occurrence network (KCN) analysis along with comprehensive reviews concerning HESS modelling, optimization objectives, algorithms, system constraints, and research gaps are presented. The review emphasizes the benefits and drawbacks of hydrogen-based HESS and analyzes the obstacles associated with their application, such as the system's high cost, technical complexity, socio-economic and environmental impact and safety concerns, which can provide the researchers with a clearer picture for future research and development. Finally, the article conveys some suggestions and directions, which can act as a roadmap toward achieving reliable and sustainable next-generation hydrogen-based HESS. � 2023 Hydrogen Energy Publications LLC Final 2024-10-14T03:17:38Z 2024-10-14T03:17:38Z 2023 Review 10.1016/j.ijhydene.2023.05.298 2-s2.0-85161663939 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161663939&doi=10.1016%2fj.ijhydene.2023.05.298&partnerID=40&md5=2eb7e64a8e4c49b133e9098aa394c375 https://irepository.uniten.edu.my/handle/123456789/34004 48 89 34836 34861 Elsevier Ltd Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
topic |
Decarbonization Hybrid energy storage system Hydrogen storage Optimization Usage count Decarbonization Electric energy storage Environmental impact Fossil fuels Analytical reviews Citation analysis Decarbonisation Electricity-consumption Electricity-generation Global energy Hybrid energy storage systems Optimisations Research potential Usage count Hydrogen storage |
spellingShingle |
Decarbonization Hybrid energy storage system Hydrogen storage Optimization Usage count Decarbonization Electric energy storage Environmental impact Fossil fuels Analytical reviews Citation analysis Decarbonisation Electricity-consumption Electricity-generation Global energy Hybrid energy storage systems Optimisations Research potential Usage count Hydrogen storage Wali S.B. Hannan M.A. Abd Rahman M.S. Alghamdi H.A. Mansor M. Ker P.J. Tiong S.K. Mahlia T.M.I. Usage count of hydrogen-based hybrid energy storage systems: An analytical review, challenges and future research potentials |
description |
Electricity generation and consumption must undergo a substantial transformation as part of the global energy transition towards decarbonization. Hydrogen-based hybrid energy storage systems (HESS) have the potential to replace the existing fossil fuel-based energy generation due to their high energy density and long storage capacity. This study has introduced a novel indicator �usage count� instead of �citation analysis� to obtain the top 100 articles in the field of hydrogen-based HESS because of the factors such as reduction of time lag, recentness and domain independency. After the filtration process, the top 100 articles with the highest usage count are obtained by providing an extensive search in the Scopus database from the year 2012�2021. An extensive comparative study between �usage count� and �citation analysis� among the selected top 100 articles is provided. Moreover, a detailed keyword co-occurrence network (KCN) analysis along with comprehensive reviews concerning HESS modelling, optimization objectives, algorithms, system constraints, and research gaps are presented. The review emphasizes the benefits and drawbacks of hydrogen-based HESS and analyzes the obstacles associated with their application, such as the system's high cost, technical complexity, socio-economic and environmental impact and safety concerns, which can provide the researchers with a clearer picture for future research and development. Finally, the article conveys some suggestions and directions, which can act as a roadmap toward achieving reliable and sustainable next-generation hydrogen-based HESS. � 2023 Hydrogen Energy Publications LLC |
author2 |
56402940200 |
author_facet |
56402940200 Wali S.B. Hannan M.A. Abd Rahman M.S. Alghamdi H.A. Mansor M. Ker P.J. Tiong S.K. Mahlia T.M.I. |
format |
Review |
author |
Wali S.B. Hannan M.A. Abd Rahman M.S. Alghamdi H.A. Mansor M. Ker P.J. Tiong S.K. Mahlia T.M.I. |
author_sort |
Wali S.B. |
title |
Usage count of hydrogen-based hybrid energy storage systems: An analytical review, challenges and future research potentials |
title_short |
Usage count of hydrogen-based hybrid energy storage systems: An analytical review, challenges and future research potentials |
title_full |
Usage count of hydrogen-based hybrid energy storage systems: An analytical review, challenges and future research potentials |
title_fullStr |
Usage count of hydrogen-based hybrid energy storage systems: An analytical review, challenges and future research potentials |
title_full_unstemmed |
Usage count of hydrogen-based hybrid energy storage systems: An analytical review, challenges and future research potentials |
title_sort |
usage count of hydrogen-based hybrid energy storage systems: an analytical review, challenges and future research potentials |
publisher |
Elsevier Ltd |
publishDate |
2024 |
_version_ |
1814061099497029632 |
score |
13.214268 |