Recent progress in electrolyser control technologies for hydrogen energy production: A patent landscape analysis and technology updates

Alternative low-to-zero carbon technologies must be developed to facilitate the clean energy transition rather than only concentrating on one or a few specific technology trajectories. The hydrogen electrolyser has many benefits over traditional energy storage technologies, making it a competitive a...

Full description

Saved in:
Bibliographic Details
Main Authors: Abu S.M., Hannan M.A., Ker P.J., Mansor M., Tiong S.K., Mahlia T.M.I.
Other Authors: 57916203200
Format: Review
Published: Elsevier Ltd 2024
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alternative low-to-zero carbon technologies must be developed to facilitate the clean energy transition rather than only concentrating on one or a few specific technology trajectories. The hydrogen electrolyser has many benefits over traditional energy storage technologies, making it a competitive alternative to the current fossil fuel combustion-based energy generation system. To better understand the impact and developments of electrolyser control technologies for hydrogen production, this study aims to shed light on current research and patent trends. The research was conducted by performing extensive keyword searches on electrolyser control methods for hydrogen generation in the Lens database and then extracting the bibliometric data from the 107 patent publications selected based on keywords, family filtering and material exclusion. An up-to-date technical overview is provided with a bibliographic study of patent growth, key players and innovators, patent distribution across jurisdictions and technological sectors, and patent categorization using the cooperative patent classification (CPC) code. Key owners, inventors, and jurisdictional hierarchies in patent publications are also identified, and the potential for further study is assessed. These selected patent documents and their landscape analysis aim to provide a systematic foundation for future developments in electrolyser technologies and materials related to hydrogen production and to propose emerging research and commercialization prospects for future researchers. � 2023 Elsevier Ltd