Predicting longitudinal dispersion coefficient using ensemble models and optimized multi-layer perceptron models
Prediction of the longitudinal dispersion coefficient (LDC) is essential for the river and water resources engineering and environmental management. This study proposes ensemble models for predicting LDC based on multilayer perceptron (MULP) methods and optimization algorithms. The honey badger opti...
保存先:
主要な著者: | Gholami M., Ghanbari-Adivi E., Ehteram M., Singh V.P., Najah Ahmed A., Mosavi A., El-Shafie A. |
---|---|
その他の著者: | 56973673400 |
フォーマット: | 論文 |
出版事項: |
Ain Shams University
2024
|
主題: | |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
A hybrid particle swarm optimization approach and its application to solving portfolio selection problems
著者:: Shamshul Bahar, Yaakob, Prof. Madya, 等
出版事項: (2011) -
Fitness-guided particle swarm optimization with adaptive Newton-Raphson for photovoltaic model parameter estimation
著者:: Premkumar M., 等
出版事項: (2025) -
Flood mapping based on novel ensemble modeling involving the deep learning, Harris Hawk optimization algorithm and stacking based machine learning
著者:: Costache R., 等
出版事項: (2025) -
Investigating the Performance of Deep Reinforcement Learning-Based MPPT Algorithm under Partial Shading Condition
著者:: Yew W.H., 等
出版事項: (2024) -
Particle Swarm Optimization (PSO) and its application in power converter system
著者:: Naziha, Ahmad Azli, Dr., 等
出版事項: (2012)