Chromatic equivalence classes of complete tripartite graphs

Some necessary conditions on a graph which has the same chromatic polynomial as the complete tripartite graph Km, n, r are developed. Using these, we obtain the chromatic equivalence classes for Km, n, n (where 1 ? m ? n) and Km1, m2, m3 (where | mi - mj | ? 3). In particular, it is shown that (i) K...

Full description

Saved in:
Bibliographic Details
Main Authors: Chia G.L., Ho C.-K.
Other Authors: 55914572800
Format: Article
Published: 2023
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-30850
record_format dspace
spelling my.uniten.dspace-308502023-12-29T15:54:37Z Chromatic equivalence classes of complete tripartite graphs Chia G.L. Ho C.-K. 55914572800 7404653303 Chromatic polynomials Chromatic uniqueness Complete tripartite graphs Equivalence classes Polynomial approximation Polynomials Set theory Chromatic polynomials Chromatic uniqueness Complete solutions Complete tripartite graphs Graph theory Some necessary conditions on a graph which has the same chromatic polynomial as the complete tripartite graph Km, n, r are developed. Using these, we obtain the chromatic equivalence classes for Km, n, n (where 1 ? m ? n) and Km1, m2, m3 (where | mi - mj | ? 3). In particular, it is shown that (i) Km, n, n (where 2 ? m ? n) and (ii) Km1, m2, m3 (where | mi - mj | ? 3, 2 ? mi, i = 1, 2, 3) are uniquely determined by their chromatic polynomials. The result (i), proved earlier by Liu et�al. [R.Y. Liu, H.X. Zhao, C.Y. Ye, A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs, Discrete Math. 289 (2004) 175-179], answers a conjecture (raised in [G.L. Chia, B.H. Goh, K.M. Koh, The chromaticity of some families of complete tripartite graphs (In Honour of Prof. Roberto W. Frucht), Sci. Ser. A (1988) 27-37 (special issue)]) in the affirmative, while result (ii) extends a result of Zou�[H.W. Zou, On the chromatic uniqueness of complete tripartite graphs Kn1, n2, n3 J. Systems Sci. Math. Sci. 20 (2000) 181-186]. � 2008 Elsevier B.V. All rights reserved. Final 2023-12-29T07:54:37Z 2023-12-29T07:54:37Z 2009 Article 10.1016/j.disc.2007.12.059 2-s2.0-56349129702 https://www.scopus.com/inward/record.uri?eid=2-s2.0-56349129702&doi=10.1016%2fj.disc.2007.12.059&partnerID=40&md5=68fe14dd988ed9be62455a294cc9b01c https://irepository.uniten.edu.my/handle/123456789/30850 309 1 134 143 All Open Access; Bronze Open Access Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
topic Chromatic polynomials
Chromatic uniqueness
Complete tripartite graphs
Equivalence classes
Polynomial approximation
Polynomials
Set theory
Chromatic polynomials
Chromatic uniqueness
Complete solutions
Complete tripartite graphs
Graph theory
spellingShingle Chromatic polynomials
Chromatic uniqueness
Complete tripartite graphs
Equivalence classes
Polynomial approximation
Polynomials
Set theory
Chromatic polynomials
Chromatic uniqueness
Complete solutions
Complete tripartite graphs
Graph theory
Chia G.L.
Ho C.-K.
Chromatic equivalence classes of complete tripartite graphs
description Some necessary conditions on a graph which has the same chromatic polynomial as the complete tripartite graph Km, n, r are developed. Using these, we obtain the chromatic equivalence classes for Km, n, n (where 1 ? m ? n) and Km1, m2, m3 (where | mi - mj | ? 3). In particular, it is shown that (i) Km, n, n (where 2 ? m ? n) and (ii) Km1, m2, m3 (where | mi - mj | ? 3, 2 ? mi, i = 1, 2, 3) are uniquely determined by their chromatic polynomials. The result (i), proved earlier by Liu et�al. [R.Y. Liu, H.X. Zhao, C.Y. Ye, A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs, Discrete Math. 289 (2004) 175-179], answers a conjecture (raised in [G.L. Chia, B.H. Goh, K.M. Koh, The chromaticity of some families of complete tripartite graphs (In Honour of Prof. Roberto W. Frucht), Sci. Ser. A (1988) 27-37 (special issue)]) in the affirmative, while result (ii) extends a result of Zou�[H.W. Zou, On the chromatic uniqueness of complete tripartite graphs Kn1, n2, n3 J. Systems Sci. Math. Sci. 20 (2000) 181-186]. � 2008 Elsevier B.V. All rights reserved.
author2 55914572800
author_facet 55914572800
Chia G.L.
Ho C.-K.
format Article
author Chia G.L.
Ho C.-K.
author_sort Chia G.L.
title Chromatic equivalence classes of complete tripartite graphs
title_short Chromatic equivalence classes of complete tripartite graphs
title_full Chromatic equivalence classes of complete tripartite graphs
title_fullStr Chromatic equivalence classes of complete tripartite graphs
title_full_unstemmed Chromatic equivalence classes of complete tripartite graphs
title_sort chromatic equivalence classes of complete tripartite graphs
publishDate 2023
_version_ 1806423385290309632
score 13.214268