Prediction of PVT properties in crude oil systems using support vector machines

Calculation of reserves in an oil reservoir and the determination of its performance and economics require good knowledge of its physical properties. Accurate determination of the pressure-volume-temperature (PVT) properties such as the bubble point pressure (Pb) and the oil formation volume factor...

Full description

Saved in:
Bibliographic Details
Main Authors: Nagi J., Kiong T.S., Ahmed S.K., Nagi F.
Other Authors: 25825455100
Format: Conference paper
Published: 2023
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Calculation of reserves in an oil reservoir and the determination of its performance and economics require good knowledge of its physical properties. Accurate determination of the pressure-volume-temperature (PVT) properties such as the bubble point pressure (Pb) and the oil formation volume factor (Bob) are important in the primary and subsequent development of an oil field. This paper proposes Support Vector Machines (SVMs) as a novel machine learning technique for predicting outputs in uncertain situations using the ?-Support Vector Regression (?-SVR) method. The objective of this research is to investigate the capability of SVRs in modeling PVT properties of crude oil systems and solving existing Artificial Neural Network (ANN) drawbacks. Three datasets used for training and testing the SVR prediction model were collected from distinct published sources. The ?-SVR model incorporates four input features from the datasets: (1) solution gas-oil ratio, (2) reservoir temperature, (3) oil gravity and, (4) gas relative density. A comparative study is carried out to compare ?-SVR performance with ANNs, nonlinear regression, and different empirical correlation techniques. The results obtained reveal that the ?-SVR once successfully trained and optimized is more accurate, reliable, and outperforms the other existing approaches such as empirical correlation for estimating crude oil PVT properties. �2009 IEEE.