Preparation and characterization of solid polymeric electrolyte of poly(vinyl) chloride-low-molecular weight LENR50 (70/30)-LiClO 4

This work presents the preparation of a free standing electrolyte film containing poly(vinyl) chloride (PVC) and 50% liquid epoxidized natural rubber (LENR50) blends as a host for the electrolyte that was doped with lithium perchlorate (LiClO 4) as the dopant salt. The electrolyte was prepared via s...

Full description

Saved in:
Bibliographic Details
Main Authors: Lee T.K., Ahmad A., Farina Y., Dahlan H.M., Rahman M.Y.A.
Other Authors: 8610515400
Format: Article
Published: 2023
Subjects:
PVC
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work presents the preparation of a free standing electrolyte film containing poly(vinyl) chloride (PVC) and 50% liquid epoxidized natural rubber (LENR50) blends as a host for the electrolyte that was doped with lithium perchlorate (LiClO 4) as the dopant salt. The electrolyte was prepared via solution-casting technique. From the impedance result, the highest ionic conductivity obtained was 9.6 � 10 -9 S cm -1 at the 30 wt % of LiClO 4. This ionic conductivity result was supported by XRD analysis that showed the addition of 5-30 wt % of LiClO 4 salt to the PVC-LENR50 was well dissociated in the electrolyte as no salt peaks were observed. This implies that the salt was fully complexed in the system. Thermal analysis revealed that T g increased with lithium salts concentration. This is due to the formation of transient crosslinkage bonds and increasing viscosity. The morphological studies revealed the good homogeneity of the PVC-LENR50 (70/30) blend as no phase separation was observed. In addition, the formation of micropores with an addition of salts in the electrolyte improved the mobility properties of Li + ions in the electrolyte system. Hence, it improves the ionic conductivity. � 2012 Wiley Periodicals, Inc.