Finite element modeling for prediction of stress - strain at several feed rates and cutting speeds for titanium (Ti-6Al-4V) alloy
Titanium (Ti-6Al-4V) alloy is a desirable material for the aircraft industry because of their excellent properties behaves of high specific strength, fracture resistant characteristics, lightweight and general corrosion resistance. This paper presents a study on a two-dimensional orthogonal cutting...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference paper |
Published: |
2023
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Titanium (Ti-6Al-4V) alloy is a desirable material for the aircraft industry because of their excellent properties behaves of high specific strength, fracture resistant characteristics, lightweight and general corrosion resistance. This paper presents a study on a two-dimensional orthogonal cutting process by using a face-milling operation through ABAQUS/EXPLICIT finite- element software. Several tests were performed at various feed rates and cutting speeds while the depth of cut remains constant. The results led to the conclusion that the stress components at integration points (Von - Mises) and the equivalent strain (PEEQ) were increased with increasing the feed rate and cutting speed during the machining process. � (2012) Trans Tech Publications, Switzerland. |
---|