Analysis of partial discharge measurement data using a support vector machine

This paper investigates the recognition of partial discharge sources by using a statistical learning theory, Support Vector Machine (SVM). SVM provides a new approach to pattern classification and has been proven to be successful in fields such as image identification and face recognition. To apply...

Full description

Saved in:
Bibliographic Details
Main Authors: Aziz N.F.A., Hao L., Lewin P.L.
Other Authors: 57221906825
Format: Conference Paper
Published: 2023
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates the recognition of partial discharge sources by using a statistical learning theory, Support Vector Machine (SVM). SVM provides a new approach to pattern classification and has been proven to be successful in fields such as image identification and face recognition. To apply SVM learning in partial discharge classification, data input is very important. The input should be able to fully represent different patterns in an effective way. The determination of features that describe the characteristics of partial discharge signals and the extraction of reliable information from the raw data are the key to acquiring valuable patterns of partial discharge signals. In this paper, data obtained from experiment is carried out in both time and frequency domain. By using appropriate combination of kernel functions and parameters, it is concluded that the frequency domain approach gives a better classification rate. �2007 IEEE.