Deterministic static sensor node placement in wireless sensor network based on territorial predator scent marking behavior
An optimum sensor node placement mechanism for Wireless Sensor Network (WSN) is desirable in ensuring the location of sensor nodes that offers maximum coverage and connectivity with minimum energy consumption. This paper proposes a sensor node placement algorithm that utilizes a new biologically ins...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2023
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An optimum sensor node placement mechanism for Wireless Sensor Network (WSN) is desirable in ensuring the location of sensor nodes that offers maximum coverage and connectivity with minimum energy consumption. This paper proposes a sensor node placement algorithm that utilizes a new biologically inspired optimization algorithm that imitates the behaviour of territorial predators in marking their territories with their odours known as Territorial Predator Scent Marking Algorithm (TPSMA). The main objectives considered in this paper are to achieve maximum coverage and minimum energy consumption with guaranteed connectivity. A simulation study has been carried out to compare the performance of the proposed algorithm implemented in two different single objective approaches with an Integer Linear Programming based algorithm and another biological inspired algorithm. The proposed single objective approaches of TPSMA studied in this paper are TPSMA with minimum energy and TPSMA with maximum coverage. Simulation results show that the WSN deployed using the proposed TPSMA sensor node placement algorithm is able to arrange the sensor nodes according to the objective required; TPSMA with maximum coverage offers the highest coverage ratio with fewer sensor nodes up to 100% coverage while TPSMA with minimum energy consumption utilized the lowest energy as low as around 4.85 Joules. Full connectivity is provisioned for all TPSMA approaches since the constraint of the optimization problem is to ensure the connectivity from all sensor nodes to the sink node. |
---|