Comparison of Grid Reactive Voltage Regulation with Reconfiguration Network for Electric Vehicle Penetration

Renewable energy sources and EV growth brings new challenges for grid stabilization. Smart grid techniques are required to reconfigure and compensate for load fluctuation and stabilize power losses and voltage fluctuation. Numerical tools are available to equip the smart grid to deal with such chall...

Full description

Saved in:
Bibliographic Details
Main Authors: Nagi F., Azwin A., Boopalan N., Ramasamy A.K., Marsadek M., Ahmed S.K.
Other Authors: 56272534200
Format: Article
Published: MDPI 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-26728
record_format dspace
spelling my.uniten.dspace-267282023-05-29T17:36:22Z Comparison of Grid Reactive Voltage Regulation with Reconfiguration Network for Electric Vehicle Penetration Nagi F. Azwin A. Boopalan N. Ramasamy A.K. Marsadek M. Ahmed S.K. 56272534200 57201882059 57211414491 16023154400 26423183000 25926812900 Renewable energy sources and EV growth brings new challenges for grid stabilization. Smart grid techniques are required to reconfigure and compensate for load fluctuation and stabilize power losses and voltage fluctuation. Numerical tools are available to equip the smart grid to deal with such challenges. Distribution Feeder reconfiguration and reactive voltage injection to the disturbed grid are some of the techniques employed for the purpose. However, either reconfiguration or injection alone is used commonly for this purpose. In this study, both techniques are applied to EV penetration as load and compared. A balanced IEEE 33 Radial network is used in this study and selected branches with high power losses are targeted for the reactive voltage injection and Minimum Spanning tree techniques (MST). EV charging loads are usually modelled with time base distribution which requires times base power flow analysis for reactive power injection. A comparison between coordinated, reconfiguration, and reactive voltage injection shows differences in power losses, voltage distortion, and cost saving. The analysis is carried out with an integer linear programming technique for coordinated charging, a minimum spanning tree for network reconfiguration, and genetic optimization for reactive power injection. Besides, all power flow analyses are carried out with the Backward/Forward sweep method. The information would help lowering power losses, grid stabilization, and charging station infrastructure planning. � 2022 by the authors. Final 2023-05-29T09:36:22Z 2023-05-29T09:36:22Z 2022 Article 10.3390/electronics11193221 2-s2.0-85139848309 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139848309&doi=10.3390%2felectronics11193221&partnerID=40&md5=8caeec2fd3028a52a4ea0ea5956df460 https://irepository.uniten.edu.my/handle/123456789/26728 11 19 3221 All Open Access, Gold MDPI Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
description Renewable energy sources and EV growth brings new challenges for grid stabilization. Smart grid techniques are required to reconfigure and compensate for load fluctuation and stabilize power losses and voltage fluctuation. Numerical tools are available to equip the smart grid to deal with such challenges. Distribution Feeder reconfiguration and reactive voltage injection to the disturbed grid are some of the techniques employed for the purpose. However, either reconfiguration or injection alone is used commonly for this purpose. In this study, both techniques are applied to EV penetration as load and compared. A balanced IEEE 33 Radial network is used in this study and selected branches with high power losses are targeted for the reactive voltage injection and Minimum Spanning tree techniques (MST). EV charging loads are usually modelled with time base distribution which requires times base power flow analysis for reactive power injection. A comparison between coordinated, reconfiguration, and reactive voltage injection shows differences in power losses, voltage distortion, and cost saving. The analysis is carried out with an integer linear programming technique for coordinated charging, a minimum spanning tree for network reconfiguration, and genetic optimization for reactive power injection. Besides, all power flow analyses are carried out with the Backward/Forward sweep method. The information would help lowering power losses, grid stabilization, and charging station infrastructure planning. � 2022 by the authors.
author2 56272534200
author_facet 56272534200
Nagi F.
Azwin A.
Boopalan N.
Ramasamy A.K.
Marsadek M.
Ahmed S.K.
format Article
author Nagi F.
Azwin A.
Boopalan N.
Ramasamy A.K.
Marsadek M.
Ahmed S.K.
spellingShingle Nagi F.
Azwin A.
Boopalan N.
Ramasamy A.K.
Marsadek M.
Ahmed S.K.
Comparison of Grid Reactive Voltage Regulation with Reconfiguration Network for Electric Vehicle Penetration
author_sort Nagi F.
title Comparison of Grid Reactive Voltage Regulation with Reconfiguration Network for Electric Vehicle Penetration
title_short Comparison of Grid Reactive Voltage Regulation with Reconfiguration Network for Electric Vehicle Penetration
title_full Comparison of Grid Reactive Voltage Regulation with Reconfiguration Network for Electric Vehicle Penetration
title_fullStr Comparison of Grid Reactive Voltage Regulation with Reconfiguration Network for Electric Vehicle Penetration
title_full_unstemmed Comparison of Grid Reactive Voltage Regulation with Reconfiguration Network for Electric Vehicle Penetration
title_sort comparison of grid reactive voltage regulation with reconfiguration network for electric vehicle penetration
publisher MDPI
publishDate 2023
_version_ 1806426714057736192
score 13.222552