Experimental and Simulation Investigation of Performance of Scaled Model for a Rotor of a Savonius Wind Turbine
Aerodynamics; Computational fluid dynamics; Potential energy; Turbine components; Turbomachine blades; Wind; Wind power; Wind turbine blades; CFX analyse; Coefficient of power; Condition; Experimental testing; Performance; Renewable energy source; Rotor experimental testing; S-ORM model; Savonius wi...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
MDPI
2023
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-26638 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-266382023-05-29T17:35:59Z Experimental and Simulation Investigation of Performance of Scaled Model for a Rotor of a Savonius Wind Turbine Al-Gburi K.A.H. Al-quraishi B.A.J. Ismail Alnaimi F.B. Tan E.S. Al-Safi A.H.S. 57760287000 57210161264 58027086700 16425096800 58001195700 Aerodynamics; Computational fluid dynamics; Potential energy; Turbine components; Turbomachine blades; Wind; Wind power; Wind turbine blades; CFX analyse; Coefficient of power; Condition; Experimental testing; Performance; Renewable energy source; Rotor experimental testing; S-ORM model; Savonius wind turbine; Scaled modeling; Wind tunnels Renewable energy sources are preferred for many power generation applications. Energy from the wind is one of the fastest-expanding kinds of sustainable energy, and it is essential in preventing potential energy issues in the foreseeable future. One pertinent issue is the many geometrical alterations that the scientific community has suggested to enhance rotor performance features. Hence, to address the challenge of developing a model that resolves these problems, the purpose of this investigation was to determine how well a scaled-down version of a Savonius turbine performed in terms of power output using a wind tunnel. Subsequently, the effect of the blockage ratio produced in the wind tunnel during the chamber test on the scaled model was evaluated. This study discusses the influences of various modified configurations on the turbine blades� torque and power coefficients (Cp) at various tip speed ratios (TSRs) using three-dimensional (3D) unsteady computational fluid dynamics. The findings showed that the scaled model successfully achieved tunnel blockage corrections, and the experimental results obtained can be used in order to estimate how the same turbine would perform in real conditions. Furthermore, numerically, the new models achieved improvements in Cp of 19.5%, 16.8%, and 12.2%, respectively, for the flow-guiding channel (FGC at ? = 30�), wavy area at tip and end (WTE), and wavy area on the convex blade (WCB) models in comparison to the benchmark S-ORM model and under identical wind speed conditions. This investigation can provide guidance for improvements of the aerodynamic characteristics of Savonius wind turbines. � 2022 by the authors. Final 2023-05-29T09:35:59Z 2023-05-29T09:35:59Z 2022 Article 10.3390/en15238808 2-s2.0-85143845407 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143845407&doi=10.3390%2fen15238808&partnerID=40&md5=10d6e9dd34769d9bbdb079581a836dfa https://irepository.uniten.edu.my/handle/123456789/26638 15 23 8808 All Open Access, Gold MDPI Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
description |
Aerodynamics; Computational fluid dynamics; Potential energy; Turbine components; Turbomachine blades; Wind; Wind power; Wind turbine blades; CFX analyse; Coefficient of power; Condition; Experimental testing; Performance; Renewable energy source; Rotor experimental testing; S-ORM model; Savonius wind turbine; Scaled modeling; Wind tunnels |
author2 |
57760287000 |
author_facet |
57760287000 Al-Gburi K.A.H. Al-quraishi B.A.J. Ismail Alnaimi F.B. Tan E.S. Al-Safi A.H.S. |
format |
Article |
author |
Al-Gburi K.A.H. Al-quraishi B.A.J. Ismail Alnaimi F.B. Tan E.S. Al-Safi A.H.S. |
spellingShingle |
Al-Gburi K.A.H. Al-quraishi B.A.J. Ismail Alnaimi F.B. Tan E.S. Al-Safi A.H.S. Experimental and Simulation Investigation of Performance of Scaled Model for a Rotor of a Savonius Wind Turbine |
author_sort |
Al-Gburi K.A.H. |
title |
Experimental and Simulation Investigation of Performance of Scaled Model for a Rotor of a Savonius Wind Turbine |
title_short |
Experimental and Simulation Investigation of Performance of Scaled Model for a Rotor of a Savonius Wind Turbine |
title_full |
Experimental and Simulation Investigation of Performance of Scaled Model for a Rotor of a Savonius Wind Turbine |
title_fullStr |
Experimental and Simulation Investigation of Performance of Scaled Model for a Rotor of a Savonius Wind Turbine |
title_full_unstemmed |
Experimental and Simulation Investigation of Performance of Scaled Model for a Rotor of a Savonius Wind Turbine |
title_sort |
experimental and simulation investigation of performance of scaled model for a rotor of a savonius wind turbine |
publisher |
MDPI |
publishDate |
2023 |
_version_ |
1806423355663843328 |
score |
13.222552 |