Evaluating the drop of electrochemical performance of Ni/YSZ and Ni/ScSZ solid oxide fuel cells operated with dry biogas
Amorphous carbon; Biogas; Catalyst activity; Catalytic oxidation; Deposition; Mass transfer; Methane; Nickel oxide; Open circuit voltage; Pelletizing; Polarization; Carbon structures; Different effects; Electrochemical performance; Internal reforming; Maximum power density; Methane decomposition; So...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
John Wiley and Sons Ltd
2023
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-26286 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-262862023-05-29T17:08:43Z Evaluating the drop of electrochemical performance of Ni/YSZ and Ni/ScSZ solid oxide fuel cells operated with dry biogas Arifin N.A. Shamsuddin A.H. Steinberger-Wilckens R. 57195493347 35779071900 6603141340 Amorphous carbon; Biogas; Catalyst activity; Catalytic oxidation; Deposition; Mass transfer; Methane; Nickel oxide; Open circuit voltage; Pelletizing; Polarization; Carbon structures; Different effects; Electrochemical performance; Internal reforming; Maximum power density; Methane decomposition; Solid oxide fuel cells (SOFCs); Temperature programmed oxidation; Solid oxide fuel cells (SOFC) This work is aimed at evaluating the influence of carbon deposition on the power density drop of in-house fabricated Ni/YSZ and Ni/ScSZ solid oxide fuel cells (SOFCs) operating in dry internal reforming of simulated biogas (CH4/CO2 = 2). An immediate drop of open-circuit voltage (OCV) and maximum power densities is observed when the fuel changes from hydrogen to biogas, 86.5% and 33.3% for the Ni/YSZ and Ni/ScSZ cells, respectively with mass transfer polarisation dominates Ni/YSZ polarisation. Carbon deposition is investigated as the cause of the reduction in performance by quantification of deposited carbon by temperature programmed oxidation (TPO) and catalytic activity test. Results from TPO analysis show unexpectedly higher amount of carbon on the Ni/ScSZ cells (2.35 � 10?3 mgC/mgcat) as compared to Ni/YSZ (5.68 � 10?4 mgC/mgcat) despite higher performance of the former. Catalytic activity tests reveal a low carbon oxidation rate compared to an initially higher methane decomposition reaction, leading to carbon deposition in both cells, in which the methane decomposition reaction of Ni/ScSZ is higher. Different effects are observed on the pellets, where the carbon deposited on Ni/YSZ deactivates the reforming reaction sites as quick as 20 minutes into the operation, whereas carbon deposited on the Ni/ScSZ pellet did not show the same blocking effect on the catalyst due to the different carbon morphology formed. A graphitic whisker-like rod structure is observed on Ni/ScSZ while amorphous non-crystalline carbon covers the Ni/YSZ pellets with 3 hours exposure to high methane content dry biogas (CH4/CO2 = 2). The difference of carbon structure affects the amount of carbon quantified in the TPO analysis where most of the amorphous carbon oxidises while some of the graphitic carbon deposits remain. � 2020 John Wiley & Sons Ltd Final 2023-05-29T09:08:43Z 2023-05-29T09:08:43Z 2021 Article 10.1002/er.6233 2-s2.0-85097264402 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097264402&doi=10.1002%2fer.6233&partnerID=40&md5=980211b71f0b46f5c20a1450fe010b66 https://irepository.uniten.edu.my/handle/123456789/26286 45 4 6405 6417 All Open Access, Bronze John Wiley and Sons Ltd Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
description |
Amorphous carbon; Biogas; Catalyst activity; Catalytic oxidation; Deposition; Mass transfer; Methane; Nickel oxide; Open circuit voltage; Pelletizing; Polarization; Carbon structures; Different effects; Electrochemical performance; Internal reforming; Maximum power density; Methane decomposition; Solid oxide fuel cells (SOFCs); Temperature programmed oxidation; Solid oxide fuel cells (SOFC) |
author2 |
57195493347 |
author_facet |
57195493347 Arifin N.A. Shamsuddin A.H. Steinberger-Wilckens R. |
format |
Article |
author |
Arifin N.A. Shamsuddin A.H. Steinberger-Wilckens R. |
spellingShingle |
Arifin N.A. Shamsuddin A.H. Steinberger-Wilckens R. Evaluating the drop of electrochemical performance of Ni/YSZ and Ni/ScSZ solid oxide fuel cells operated with dry biogas |
author_sort |
Arifin N.A. |
title |
Evaluating the drop of electrochemical performance of Ni/YSZ and Ni/ScSZ solid oxide fuel cells operated with dry biogas |
title_short |
Evaluating the drop of electrochemical performance of Ni/YSZ and Ni/ScSZ solid oxide fuel cells operated with dry biogas |
title_full |
Evaluating the drop of electrochemical performance of Ni/YSZ and Ni/ScSZ solid oxide fuel cells operated with dry biogas |
title_fullStr |
Evaluating the drop of electrochemical performance of Ni/YSZ and Ni/ScSZ solid oxide fuel cells operated with dry biogas |
title_full_unstemmed |
Evaluating the drop of electrochemical performance of Ni/YSZ and Ni/ScSZ solid oxide fuel cells operated with dry biogas |
title_sort |
evaluating the drop of electrochemical performance of ni/ysz and ni/scsz solid oxide fuel cells operated with dry biogas |
publisher |
John Wiley and Sons Ltd |
publishDate |
2023 |
_version_ |
1806428504185634816 |
score |
13.214268 |