Investigating the reliability of machine learning algorithms as a sustainable tool for total suspended solid prediction
Forecasting; Iron; Learning algorithms; Machine learning; Mean square error; Neural networks; Potable water; Reservoirs (water); Turbidity; Water quality; Water supply; Coefficient of determination; Iron concentrations; Output parameters; Performance criterion; Root mean square errors; Strong correl...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Ain Shams University
2023
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Forecasting; Iron; Learning algorithms; Machine learning; Mean square error; Neural networks; Potable water; Reservoirs (water); Turbidity; Water quality; Water supply; Coefficient of determination; Iron concentrations; Output parameters; Performance criterion; Root mean square errors; Strong correlation; Total suspended solids; TSS concentration; Predictive analytics |
---|