A review of machine learning and deep learning techniques for anomaly detection in iot data

Anomaly detection has gained considerable attention in the past couple of years. Emerging technologies, such as the Internet of Things (IoT), are known to be among the most critical sources of data streams that produce massive amounts of data continuously from numerous applications. Examining these...

Full description

Saved in:
Bibliographic Details
Main Authors: Al-Amri R., Murugesan R.K., Man M., Abdulateef A.F., Al-Sharafi M.A., Alkahtani A.A.
Other Authors: 57224896623
Format: Review
Published: MDPI AG 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anomaly detection has gained considerable attention in the past couple of years. Emerging technologies, such as the Internet of Things (IoT), are known to be among the most critical sources of data streams that produce massive amounts of data continuously from numerous applications. Examining these collected data to detect suspicious events can reduce functional threats and avoid unseen issues that cause downtime in the applications. Due to the dynamic nature of the data stream characteristics, many unresolved problems persist. In the existing literature, methods have been designed and developed to evaluate certain anomalous behaviors in IoT data stream sources. However, there is a lack of comprehensive studies that discuss all the aspects of IoT data processing. Thus, this paper attempts to fill this gap by providing a complete image of various state-of-the-art techniques on the major problems and core challenges in IoT data. The nature of data, anomaly types, learning mode, window model, datasets, and evaluation criteria are also presented. Research challenges related to data evolving, feature-evolving, windowing, ensemble approaches, nature of input data, data complexity and noise, parameters selection, data visualizations, heterogeneity of data, accuracy, and large-scale and high-dimensional data are investigated. Finally, the challenges that require substantial research efforts and future directions are summarized. � 2021 by the authors. Licensee MDPI, Basel, Switzerland.