Recent trends and developments in conducting polymer nanocomposites for multifunctional applications
Actuators; Adhesives; Blending; Charge transfer; Composite materials; Conducting polymers; Corrosion resistant coatings; Cost effectiveness; Electric fields; Energy storage; Flexible electronics; Fossil fuels; Fuel cells; Fuel storage; Medical applications; Nanocomposites; Organic semiconductor mate...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Review |
Published: |
MDPI
2023
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-26025 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-260252023-05-29T17:06:10Z Recent trends and developments in conducting polymer nanocomposites for multifunctional applications Sharma S. Sudhakara P. Omran A.A.B. Singh J. Ilyas R.A. 57211422917 24402988200 55212152300 57226896725 57196328367 Actuators; Adhesives; Blending; Charge transfer; Composite materials; Conducting polymers; Corrosion resistant coatings; Cost effectiveness; Electric fields; Energy storage; Flexible electronics; Fossil fuels; Fuel cells; Fuel storage; Medical applications; Nanocomposites; Organic semiconductor materials; Polymer solar cells; Processing; Rare earths; Scratch resistance; Shape-memory alloy; Shape-memory polymer; Supercapacitor; Charge transfer complex; Conducting polymer composites; Conducting polymer nanocomposites; Electrically conducting polymer; Improved mechanical characteristics; Inorganic semiconductors; Optical and electrical properties; Organic electronic materials; Functional polymers Electrically-conducting polymers (CPs) were first developed as a revolutionary class of organic compounds that possess optical and electrical properties comparable to that of metals as well as inorganic semiconductors and display the commendable properties correlated with traditional polymers, like the ease of manufacture along with resilience in processing. Polymer nanocomposites are designed and manufactured to ensure excellent promising properties for anti-static (electrically conducting), anti-corrosion, actuators, sensors, shape memory alloys, biomedical, flexible electronics, solar cells, fuel cells, supercapacitors, LEDs, and adhesive applications with desired-appealing and cost-effective, functional surface coatings. The distinctive properties of nanocomposite materials involve significantly improved mechanical characteristics, barrier-properties, weight-reduction, and increased, long-lasting performance in terms of heat, wear, and scratch-resistant. Constraint in availability of power due to continuous depletion in the reservoirs of fossil fuels has affected the performance and functioning of electronic and energy storage appliances. For such reasons, efforts to modify the performance of such appliances are under way through blending design engineering with organic electronics. Unlike conventional inorganic semiconductors, organic electronic materials are developed from conducting polymers (CPs), dyes and charge transfer complexes. However, the conductive polymers are perhaps more bio-compatible rather than conventional metals or semi-conductive materials. Such characteristics make it more fascinating for bio-engineering investigators to conduct research on polymers possessing antistatic properties for various applica-tions. An extensive overview of different techniques of synthesis and the applications of polymer bio-nanocomposites in various fields of sensors, actuators, shape memory polymers, flexible elec-tronics, optical limiting, electrical properties (batteries, solar cells, fuel cells, supercapacitors, LEDs), corrosion-protection and biomedical application are well-summarized from the findings all across the world in more than 150 references, exclusively from the past four years. This paper also presents recent advancements in composites of rare-earth oxides based on conducting polymer composites. Across a variety of biological and medical applications, the fact that numerous tissues were receptive to electric fields and stimuli made CPs more enticing. � 2021 by the authors. Licensee MDPI, Basel, Switzerland. Final 2023-05-29T09:06:10Z 2023-05-29T09:06:10Z 2021 Review 10.3390/polym13172898 2-s2.0-85114024246 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114024246&doi=10.3390%2fpolym13172898&partnerID=40&md5=a81a8bb997401441d1f98c114d76a66f https://irepository.uniten.edu.my/handle/123456789/26025 13 17 2898 All Open Access, Gold, Green MDPI Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
description |
Actuators; Adhesives; Blending; Charge transfer; Composite materials; Conducting polymers; Corrosion resistant coatings; Cost effectiveness; Electric fields; Energy storage; Flexible electronics; Fossil fuels; Fuel cells; Fuel storage; Medical applications; Nanocomposites; Organic semiconductor materials; Polymer solar cells; Processing; Rare earths; Scratch resistance; Shape-memory alloy; Shape-memory polymer; Supercapacitor; Charge transfer complex; Conducting polymer composites; Conducting polymer nanocomposites; Electrically conducting polymer; Improved mechanical characteristics; Inorganic semiconductors; Optical and electrical properties; Organic electronic materials; Functional polymers |
author2 |
57211422917 |
author_facet |
57211422917 Sharma S. Sudhakara P. Omran A.A.B. Singh J. Ilyas R.A. |
format |
Review |
author |
Sharma S. Sudhakara P. Omran A.A.B. Singh J. Ilyas R.A. |
spellingShingle |
Sharma S. Sudhakara P. Omran A.A.B. Singh J. Ilyas R.A. Recent trends and developments in conducting polymer nanocomposites for multifunctional applications |
author_sort |
Sharma S. |
title |
Recent trends and developments in conducting polymer nanocomposites for multifunctional applications |
title_short |
Recent trends and developments in conducting polymer nanocomposites for multifunctional applications |
title_full |
Recent trends and developments in conducting polymer nanocomposites for multifunctional applications |
title_fullStr |
Recent trends and developments in conducting polymer nanocomposites for multifunctional applications |
title_full_unstemmed |
Recent trends and developments in conducting polymer nanocomposites for multifunctional applications |
title_sort |
recent trends and developments in conducting polymer nanocomposites for multifunctional applications |
publisher |
MDPI |
publishDate |
2023 |
_version_ |
1806425658548551680 |
score |
13.223943 |