Urban Flood Depth Estimate with a New Calibrated Curve Number Runoff Prediction Model
Floods; Forecasting; Infiltration; Rain; Sewage; Soil conservation; Statistical methods; Storms; Bootstrap; Curve numbers; Drainage infrastructure; Inferential statistics; Rainfall-runoff modeling; Runoff prediction model; Soil conservation services; Sum of squared errors; Runoff
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2023
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-25778 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-257782023-05-29T16:14:10Z Urban Flood Depth Estimate with a New Calibrated Curve Number Runoff Prediction Model Ling L. Yusop Z. Chow M.F. 56203785300 6507841909 57214146115 Floods; Forecasting; Infiltration; Rain; Sewage; Soil conservation; Statistical methods; Storms; Bootstrap; Curve numbers; Drainage infrastructure; Inferential statistics; Rainfall-runoff modeling; Runoff prediction model; Soil conservation services; Sum of squared errors; Runoff The 1954 Soil Conservation Services (SCS) runoff predictive model was adopted in engineering designs throughout the world. However, its runoff prediction reliability was under scrutiny by recent studies. The conventional curve number (CN) selection methodology is often very subjective and lacks scientific justification while nested soil group catchments complicate the issue with the risk of inappropriate curve number selection which produces unreliable runoff results. The SCS CN model was statistically invalid (? = 0.01 level) and over predicted runoff volume as much as 21% at the Sungai Kerayong catchment in Kuala Lumpur, Malaysia. Blind adoption of the model will commit a type II error. As such, this study presented a new method to calibrate and formulate an urban runoff model with inferential statistics and residual modelling technique to correct the runoff prediction results from the SCS CN model with a corrected equation. The new model out-performed the Asymptotic runoff model and SCS CN runoff model with low predictive model bias, reduced sum of squared errors by 32% and achieved high Nash-Sutcliffe efficiency value of 0.96. The derived urban curve number is 98.0 with 99% confidence interval ranging from 97.8 to 99.5 for Sungai Kerayong catchment. Twenty-five storms generated almost 29 million m3 runoff (11,548 Olympic size swimming pools) from the Sungai Kerayong catchment in this study. 75%-94% of the rain water became runoff from those storms and lost through the catchment, without efficient drainage infrastructure in place, the averaged flood depth reached 6.5 cm while the actual flood depth will be deeper at the flood ponding area near to the catchment outlet. � 2013 IEEE. Final 2023-05-29T08:14:09Z 2023-05-29T08:14:09Z 2020 Article 10.1109/ACCESS.2020.2964898 2-s2.0-85078699877 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078699877&doi=10.1109%2fACCESS.2020.2964898&partnerID=40&md5=ea4cb64f10842d6655fe26a809b5c59f https://irepository.uniten.edu.my/handle/123456789/25778 8 8952667 10915 10923 All Open Access, Gold Institute of Electrical and Electronics Engineers Inc. Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
description |
Floods; Forecasting; Infiltration; Rain; Sewage; Soil conservation; Statistical methods; Storms; Bootstrap; Curve numbers; Drainage infrastructure; Inferential statistics; Rainfall-runoff modeling; Runoff prediction model; Soil conservation services; Sum of squared errors; Runoff |
author2 |
56203785300 |
author_facet |
56203785300 Ling L. Yusop Z. Chow M.F. |
format |
Article |
author |
Ling L. Yusop Z. Chow M.F. |
spellingShingle |
Ling L. Yusop Z. Chow M.F. Urban Flood Depth Estimate with a New Calibrated Curve Number Runoff Prediction Model |
author_sort |
Ling L. |
title |
Urban Flood Depth Estimate with a New Calibrated Curve Number Runoff Prediction Model |
title_short |
Urban Flood Depth Estimate with a New Calibrated Curve Number Runoff Prediction Model |
title_full |
Urban Flood Depth Estimate with a New Calibrated Curve Number Runoff Prediction Model |
title_fullStr |
Urban Flood Depth Estimate with a New Calibrated Curve Number Runoff Prediction Model |
title_full_unstemmed |
Urban Flood Depth Estimate with a New Calibrated Curve Number Runoff Prediction Model |
title_sort |
urban flood depth estimate with a new calibrated curve number runoff prediction model |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
publishDate |
2023 |
_version_ |
1806426690551808000 |
score |
13.223943 |