Enhancing the prediction accuracy of data-driven models for monthly streamflow in Urmia Lake Basin based upon the autoregressive conditionally heteroskedastic time-series model

Hydrological modeling is one of the important subjects in managing water resources and the processes of predicting stochastic behavior. Developing Data-Driven Models (DDMs) to apply to hydrological modeling is a very complex issue because of the stochastic nature of the observed data, like seasonali...

全面介紹

Saved in:
書目詳細資料
Main Authors: Attar N.F., Pham Q.B., Nowbandegani S.F., Rezaie-Balf M., Fai C.M., Ahmed A.N., Pipelzadeh S., Dung T.D., Nhi P.T.T., Khoi D.N., El-Shafie A.
其他作者: 57203768412
格式: Article
出版: MDPI AG 2023
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!